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Forecasting of rice grain yield in long term fertilizer 

experiments (LTFE): An application of the Arima time 

series model 

 
Krishnaveni G, Kuldeep Tandan, ML Lakhera and Sweta Ramole 

 
Abstract 
Accurate forecasting of grain yield and straw yield of rice crop is essential for ensuring food security and 

sustainable agricultural planning. This study investigates the application of the Autoregressive Integrated 

Moving Average (ARIMA) model for predicting grain yield and straw yield of rice crop in long-term 

fertilizer experiments (LTFEs). The research utilizes historical yield data from LTFEs, incorporating 

different fertilizer treatments to analyze trends and patterns. The ARIMA model is employed to assess 

time-series data, identify optimal model parameters, and generate forecasts. Model performance is 

evaluated using statistical measures such as Mean Absolute Error (MAE) and Root Mean Square Error 

(RMSE). The analysis for rice grain yield and rice straw yield identified ARIMA (0,1,0) and ARIMA 

(2,2,0) as the optimal model specification respectively. By applying this model to the time series data, 

projections were made for the next five years with the objective of achieving the highest possible 

forecasting accuracy. 

 

Keywords: ARIMA, rice yield forecasting, long-term fertilizer experiments, time series analysis 

 

1. Introduction 

Long-Term Fertilizer Experiments (LTFEs) are agricultural studies conducted over extended 

periods to evaluate the impact of continuous fertilizer application on soil health, crop 

productivity, and sustainability. These experiments help understand the long-term effects of 

different nutrient management practices, including chemical fertilizers, organic amendments, 

and integrated nutrient management. LTFEs are particularly important in staple crops like rice, 

wheat, and maize, as they provide valuable insights into nutrient-use efficiency and long-term 

soil health.  

Reliable forecasting of crop production and yields supports agribusinesses and policymakers in 

supply chain planning and resource allocation. Statistical techniques help forecast these 

parameters, aiding decisions on food security, land use, and environmental concerns. 

Forecasting uses past data to predict future outcomes and plays a vital role in agriculture. 

Accurate forecasting is essential for long-term planning, especially for orchards and perennial 

crops, ensuring better resource use and maximizing profits. 

This study aims to forecast the grain yield and straw yield of rice crop in long-term fertilizer 

experiments (LTFEs) for the next five years using the Autoregressive Integrated Moving 

Average (ARIMA) model. The ARIMA model, introduced by Box and Jenkins, is often 

considered superior for univariate time series with correlated lag variables, as it effectively 

captures the underlying data patterns and produces minimal forecast errors. However, ARIMA 

is most effective for short-term predictions, typically within a five-year horizon, relying solely 

on historical data. The ARIMA model was chosen for this study due to its ability to account 

for non-zero autocorrelation between consecutive values in the time series data, making it a 

reliable tool for trend prediction. 

 

2. Review literature 

Saeed et al. (2000) [11] used the Box-Jenkins ARIMA methodology to forecast wheat 

production in Pakistan, based on time series data from 1947-48 to 1988-89. Diagnostic checks 

indicated that the ARIMA (2,2,1) model was the most suitable. They forecasted wheat 

production for the period from 1999-2000 to 2012-13 with 95% confidence limits. 

Sarda and Prajneshu (2002) [12] used the ARIMA time series method to forecast pesticide 

consumption in the country.  
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They found that the ARIMA (2,1,0) model had the lowest 

goodness of fit criteria among all tested models, making it the 

best fit for the data. They also applied the Box-Ljung test to 

assess the independence of the model's errors. 

Yaseen et al. (2005) [13] modeled and forecasted sugarcane 

yield in Pakistan using time series data from 1947 to 2002. 

They applied the ARIMA (2,1,2) model and predicted the 

yield up to 2008-09, with forecasted values for 1999-2000 to 

2001-02 closely matching the actual yield. 

Padhan (2012) [7] applied various ARIMA models to forecast 

the productivity of different crops in India. He fitted ARIMA 

models (1,0,1), (1,0,1), (2,1,2), (1,1,2), and (1,1,0) for crops 

such as gram, jowar, jute, pulses, and wheat, achieving 

adjusted R² values of 0.17, 0.42, 0.78, 0.49, and 0.16, 

respectively. 

Prabakaran et al. (2013) [8] applied ARIMA (1, 1, 1) and 

ARIMA (1, 1, 0) models to forecast wheat area and 

production in India from 1950-51 to 2011-12. The models 

predicted a wheat area of 31.46 thousand hectares for 2015, 

with a range of 34.25 to 31.46 thousand hectares, and a 

production of 97.73 thousand tonnes, with a range of 107.55 

to 87.92 thousand tonnes. 

Prabakaran and Sivapragasam (2014) [9] analyzed rice area 

and production data from 1950-51 to 2011-12 using time 

series methods, including ACF and PACF. They applied an 

ARIMA (1, 1, 1) model to forecast rice area and production 

for 2015, estimating the area at 44.75 thousand hectares and 

production at 104.37 thousand tonnes, with confidence 

intervals. 

Jadhav et al. (2017) [4] demonstrated the effectiveness of farm 

price forecasting for crops like Paddy, Ragi, and Maize in 

Karnataka using time series data from 2002 to 2016. They 

applied univariate ARIMA models to predict prices and 

assessed accuracy using MSE, MAPE, and Theil's U 

coefficient. The results showed that the ARIMA model 

provided valid price forecasts with lower MSE, MAPE, and 

Theil's U values. 

Hemavathi and Prabakaran (2018) [3] applied the ARIMA 

model to forecast the area, productivity, and growth trends of 

rice in Tamil Nadu's Thanjavur district using data from 1991 

to 2015. Their predictions indicated a decline in rice 

cultivation area, productivity, and production over the next 

four years. 

Bharati and Anil Kumar Singh (2019) [1] used the Box-Jenkins 

ARIMA model to predict India's rice production from 1950-

51 to 2017-18. The ARIMA (0, 1, 1) model was found to be 

effective, with prediction errors below 3% for the years 2015-

16 to 2017-18. The model's performance was evaluated using 

various statistical criteria, and forecasts for rice production 

were made up to 2099. 

Praveen and Sharma (2019) [10] analyzed 50 years of data 

(1967-2016) across India, revealing that rising annual 

temperatures typically reduce land productivity for most 

crops, posing a food security risk. Their ARIMA forecast for 

the next 20 years suggests that higher temperatures and 

rainfall may boost yields of some crops like gram and 

sugarcane. However, climate-sensitive crops such as wheat, 

rice, and cotton could experience fluctuating production with 

increasing temperatures. 

Delvadiya et al. (2023) [2] analyzed trends in groundnut area, 

production, and productivity in Gujarat from 1991-92 to 

2019-20 using data from the Directorate of Agriculture. They 

found that a cubic model with a five-year moving average 

best forecasted area, while a linear model was ideal for 

production and productivity. The ARIMA (2,1,0) model 

effectively forecasted area trends but was less suitable for 

production and productivity. 

Mishra et al. (2024) [6] explored the challenges of estimating 

potato production for sustainable agricultural practices using 

historical data from agricultural markets in India, China, and 

the USA. They found that the ETS model outperformed 

ARIMA in predicting potato production. Their predictions 

indicated that China, India, and the USA would contribute 

100,417, 61,882, and 18,229 thousand tonnes of potato 

production, respectively. 

Ketali et al. (2024) [5] analyzed data from 1950-51 to 2017-18 

for major pulse crops in India, including Bengal gram, Red 

gram, Green gram, and Black gram, using the Box-Jenkins 

ARIMA method to forecast production from 2018-19 to 2030-

31. They found that production of all pulse crops showed an 

increasing trend. The best predictions were made with 

ARIMA models: (0,1,1) for Bengal gram (1.03 Mt), (2,1,3) 

for Red gram (0.20 Mt), (2,1,3) for Green gram (-1.47 Mt), 

and (2,1,2) for Black gram (-0.51 Mt). 

 

3. Materials and Methods 

The data for this study were obtained from the records of 

long-term fertilizer experiments conducted under the AICRP 

project by the Department of Soil Science, College of 

Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur. 

The dataset includes grain and straw yield data for rice crop 

over 20 years, from 2003-04 to 2022-23. They used the 

Mahamaya variety from 2003-04 to 2017-18 and the 

Rajeswari variety from 2019-20 to till date. The data was 

recorded on a treatment-wise and replication-wise basis after 

harvesting at maturity. Long term fertilizer experiments data, 

such as yield information, may not follow a normal 

distribution and could be skewed by outliers or extreme 

values. Since the input factors in our long-term fertilizer 

experiments have changed, this violates the standard rules for 

conducting long-term studies. However, it is understandable 

that older crop varieties may become obsolete or unavailable 

as they are replaced by newer ones. Changing the variety 

affects the assumption of normality in the data. Therefore, 

before applying the ARIMA model, the data is converted to 

the sustainable transformation. Transforming the data can 

help achieve a more normal distribution, facilitating the 

application of statistical tests and models that rely on this 

assumption. The transformed data was used in this study to 

analyze trends in the yield of the rice crop within the context 

of the long-term fertilizer experiments. Typically, long-term 

fertilizer experiments maintain consistent treatments and 

inputs for crop cultivation. In this study, the basic treatments 

remained unchanged throughout the period under 

consideration.  

 

3.1. ARIMA models for predicting yield trends 

The Box and Jenkins model (1976) will be utilized for yield 

forecasting, with the Auto-Regressive Integrated Moving 

Average (ARIMA) serving as the fundamental category of 

models for time series forecasting. In these models, different 

series appearing in the forecasting equations represent the 

“Auto-Regressive” process. Meanwhile, the inclusion of 

lagged forecast errors in the model characterizes the “Moving 

Average” process. The ARIMA model is represented as 

ARIMA (p, d, q), where ‘p’ denotes the order of the auto-
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regressive process, ‘d’ indicates the level of differencing 

required to achieve stationarity, and ‘q’ represents the order of 

the moving average process. 

Auto Regressive process of order (p) is 

 

Yt=C+ϕ1Yt-1+ϕ2Yt-2 +...ϕqYt-q+ϵt 

 

Where  

Yt is the current observation,  

C is a constant,  

ϵt is the error at time t, and  

ϕ1 to ϕp are the moving average parameters 

 

This is similar to multiple regression, but it uses lagged values 

of Yt as predictors. This type of model is called an AR(p) 

model, meaning an autoregressive model of order p. 

Moving Average process of order (q) is 

 

Yt=C+ϵt+θ1ϵt-1+θ2ϵt-2+...+θqϵt-q 

 

Where  

Yt is the current observation,  

C is a constant,  

ϵt is the error at time t, and  

θ1 to θq are the moving average parameters.  

 

The basic formulation of ARIMA (p,d,q) could be described 

as,  

 

Y’t =c+ϕ1Y’t-1+ϕ2Y’t-2+…+ϕpY’t-p+ϵt+θ1ϵt-1+θ1ϵt-1+…+θ1ϵt-1 

 

Where  

Y`t is the differenced and stationary time series at time t. 

C is a constant or mean of the differenced series. 

ϕ1,ϕ2,...,ϕp are autoregressive parameters representing the 

dependence on past values. 

ϵt is the white noise error term at time t. 

θ1,θ2,...,θq are MA parameters represents dependence on past 

forecast errors. 

 

3.2. The Box-Jenkins modelling procedure  

Instead of relying on traditional econometric methods, the 

Box-Jenkins approach is preferred for forecasting due to its 

mathematical robustness and reliability. This method follows 

a structured sequence of stages within the ARIMA modeling 

process to develop an effective model. The constructed 

models are then evaluated for accuracy using historical data. 

A well-fitted model is characterized by minimal residuals that 

contain little useful information and are randomly distributed. 

If the model does not perform satisfactorily, the entire process 

is repeated to refine the initial model using newly available 

data. This iterative procedure continues until the best-fitting 

model is identified. The key stages in developing an ARIMA 

forecasting model include: 

1. Model specification 

2. Model estimation 

3. Diagnostic checking 

4. Forecasting 

 

3.2.1. Model specification 

The primary objective of ARIMA modeling is to determine 

the most appropriate values for p, d, and q. This can be 

partially addressed by examining the Auto-Correlation 

Function (ACF) and Partial Auto-Correlation Function 

(PACF) of the time series data (Pindyck & Rubinfeld, 1991). 

The ACF helps identify the order of the moving average 

component (q), while the PACF provides insight into the 

order of the autoregressive component (p). The first step is to 

assess whether the data is stationary. The degree of 

differencing required to achieve stationarity, denoted as d, is 

determined based on the point at which the ACF approaches 

zero. Once d is established, the stationary series is further 

analyzed using ACF and PACF to select appropriate values 

for p and q. 

 

3.2.2. Model estimation  
The next step involves estimating the model using a statistical 

software package. The objective is to obtain parameter 

estimates for the initially proposed ARIMA model based on 

the selected values of p and q. The ARIMA coefficients (ϕ 

and θ) are determined using a nonlinear least squares 

approach. One of the most widely used techniques for 

estimating ARIMA models is known as “Marquardt's 

compromise.” 

 

3.2.3. Diagnostic checking 

Diagnostic checks are essential for evaluating the accuracy of 

a time series model. The first diagnostic check involves 

residual analysis, where a time series plot of residuals is 

examined. If the residuals exhibit a random scatter around the 

zero line without any noticeable trend or pattern, the model is 

considered appropriate. The second diagnostic check assesses 

the normality of residuals. The first normality test involves 

plotting normal scores against residuals; if the points align 

along a straight line, the model is deemed a good fit. 

Additionally, a histogram of residuals is analyzed to confirm 

their normal distribution. The third diagnostic check evaluates 

the model's goodness of fit by plotting residuals against the 

corresponding fitted values. If no discernible pattern emerges 

in this plot, the model is considered well-fitted to the time 

series data. 

 

3.2.4. Forecasting  

After evaluating the predictive performance of the fitted 

ARIMA model, along with the 95% confidence interval 

estimates, a forecast is conducted for a period of up to five 

years. A longer forecast horizon is avoided, as prediction 

errors tend to increase significantly when projecting too far 

into the future. 

The statistical analysis for this study was conducted using "R: 

The R Project for Statistical Computing". R is a widely 

utilized open-source programming language, renowned for its 

capabilities in statistical analysis, data manipulation, and 

machine learning. The open-source statistical software 'R' 

(version 4.2.2) was employed, along with various statistical 

and time series packages, including 'tseries' (version 0.10-54) 

and 'forecast' to facilitate model development and forecasting. 

 

4. Results and discussion 

To understand the data's behavior, time series graphs were 

generated. A time series analysis was conducted on rice grain 

yield from 2003 to 2022. Trends and variations over time 

were examined using statistical visualization. This approach 

helps identify patterns, fluctuations, and potential influencing 

factors. The Figure 1 below represents the line plot of rice 

grain yield recorded between 2003 and 2022.  
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Fig 1: Rice grain yield recorded between 2003 and 2022 
 

To build ARIMA model, the preliminary steps followed were 

Unit root test, identification of the parameter, then estimation 

of parameters and at last diagnostic checking of the model 

was done. Then the best fitted ARIMA model is used for 

forecasting of data for next 5 years. 

 

4.1. Unit root test (stationarity test) 

The stationarity of the time series for rice grain yield in LTFE 

was evaluated using the Augmented Dickey-Fuller (ADF) 

test, with the results presented in Table 1. The test indicated 

that the original series was non-stationary, as the p-value 

exceeded 0.05. To achieve stationarity, the series was first 

differenced (d=1), resulting in a significant ADF test outcome 

with a p-value below 0.05. Consequently, this differenced 

series was utilized for developing the ARIMA model to 

analyze rice grain yield. 

 
Table 1: Unit root test for assessing stationarity of rice grain yield in LTFE 

 

 Original values 1st Differencing 

 ADF value P value ADF value P value 

Grain yield -1.9228 0.6018 -4.1505 0.01801 

 

4.2. Parameter identification  

The differencing parameter ‘d’ was predetermined, and for 

rice grain yield in LTFE, it was set to d=1. The autoregressive 

(p) and moving average (q) parameters were identified using 

the PACF and ACF of the first-differenced stationary series 

respectively. The ACF and PACF plots for rice grain yield, 

presented in Figure 2, were used to determine the appropriate 

values of ‘q’ and ‘p’. The ACF revealed a significant lag 

exceeding the standard error limit, while the PACF indicated 

that a specific number of lags also surpassed this threshold. 

Based on these observations, the values of ‘p’ and ‘q’ for rice 

grain yield in LTFE were determined, facilitating the 

selection of the optimal ARIMA model using the insights 

gained from the first-differenced series. 

 

 
 

Fig 2: ACF and PACF plots of first differenced series 
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4.3. Estimation of parameter  

The Augmented Dickey-Fuller (ADF) test confirmed that the 

series is auto-correlated (Table 1). After first differencing the 

series, it became stationary, and the autocorrelation was 

removed. All the models were estimated based on the 

identified values of p, d, and q for rice grain yield and the 

results are presented in Table 2. The best-fitting ARIMA 

model for the rice grain yield was ARIMA (0,1,0) as indicated 

by the lowest AIC and BIC values (Table 3). Eighty percent 

of the data was used for model identification, after which the 

parameters were estimated using the maximum likelihood 

method. The Summary of the best fitted model for rice grain 

yield is presented in table 3 which includes log-likelihood, 

AIC, BIC and AICc values. The model's performance was 

evaluated using rest of twenty percent of holdout data, with 

error metrics such as MAPE, MAE, RMSE, and MASE 

(Table 4). Therefore, the ARIMA (0, 1, 0) model appears to 

be the best model for forecasting the future values of rice 

grain yield in LTFE. However, the model still needs to be 

validated through diagnostic checks of the residuals. 

 
Table 2: Preliminary Models 

 

MODEL AIC 

ARIMA(2,1,2) with drift Inf 

ARIMA(0,1,0) with drift -149.504 

ARIMA(1,1,0) with drift -151.179 

ARIMA(0,1,1) with drift Inf 

ARIMA(0,1,0) -151.983 

ARIMA(1,1,1) with drift Inf 

 

Best model: ARIMA (0,1,0) 

 
Table 3: Summary of the best fitted model for rice grain yield 

 

Model Log-likelihood AIC BIC AICc 

ARIMA(0,1,0) 77.11 -152.22 -151.27 -151.98 

 
Table 4: The values of MAPE, MAE, MASE and RMSE of best 

fitted model for rice grain yield 
 

MODEL MAPE MAE MASE RMSE 

ARIMA(0,1,0) 20.32029 0.003132886 0.9502687 0.004074691 

 

4.4. Forecasting 

The table 5 presents forecasted values from an ARIMA model 

for the years 2023 to 2027, along with 80% and 95% 

confidence intervals. The forecasted values for the years 2023 

to 2027 show a stable trend, maintaining a constant forecast 

value of 0.01428 kg/ha across all years. Despite this stability, 

the confidence intervals widen progressively over time, 

indicating increasing uncertainty in long-term projections. 

The 80% confidence intervals reveal a gradual expansion, 

starting from 0.00892 kg/ha to 0.01964 kg/ha in 2023 and 

widening to 0.0023 kg/ha to 0.02626 kg/ha by 2027. This 

increase in range suggests that while the forecast remains 

unchanged, the variability in potential outcomes grows over 

time. Similarly, the 95% confidence intervals also 

demonstrate increasing uncertainty. In 2023, the lower bound 

is 0.00609 kg/ha and the upper bound is 0.02247 kg/ha, 

whereas by 2027, the range extends from 0.00404 kg/ha to 

0.03260 kg/ha. This broadening range underscores the 

potential variability in the forecasted parameter and highlights 

the need for cautious interpretation of long-term predictions. 

Figure 3 shows the five-year forecasted data of rice grain 

yield, generated by applying the ARIMA (0,1,0) model to the 

time series data. 
 

Table 5: Prediction of rice grain yield for next 5 years from ARIMA 

(0, 1, 0) model (kg/ha) 
 

Year Forecast Lo 80 Hi 80 Lo 95 Hi 95 

2023 0.01428 0.008922 0.019638 6.09E-02 0.022474 

2024 0.01428 0.006703 0.021857 2.69E-02 0.025868 

2025 0.01428 0.005 0.02356 8.81E-02 0.028472 

2026 0.01428 0.003565 0.024995 2.11E-02 0.030667 

2027 0.01428 0.0023 0.02626 4.04E-02 0.032602 

 

 
 

Fig 3: Forecast graph from ARIMA (0,1,0) 
 

Table 6 illustrates the predicted rice grain yield over a five-

year period, based on the ARIMA (0,1,0) model. This table 

shows yield data after converting the transformed forecasted 

data which shown in table 5 into original yield data. The 

forecasted values for the years 2023 to 2027 remain constant 

at 1204.95 kg/ha, suggesting a stable trend over the forecast 

period. This indicates that the projected variable is expected 

to experience minimal fluctuations, maintaining a steady level 

across the years. The 80% confidence intervals show a 

relatively narrow range, indicating high confidence in the 

stability of the forecast. In 2023, the 80% confidence interval 

spans from 1177.74 kg/ha to 1232.17 kg/ha, and by 2027, it 

slightly widens to a range of 1144.10 kg/ha to 1265.81 kg/ha. 

The gradual expansion of the interval suggests a small 

increase in uncertainty over time, but overall, the values 

remain within a controlled range. The 95% confidence 

intervals, which provide a broader range of potential 

outcomes, also indicate a stable forecast with minor 

variations. The lower bound starts at 1163.33 kg/ha in 2023 

and slightly decreases to 1111.89 kg/ha in 2027, while the 

upper bound increases from 1246.58 kg/ha to 1298.02 kg/ha 

over the same period.  

 
Table 6: Five-Year Forecast of Rice Grain Yield Using ARIMA 

(0,1,0) Model 
 

Year Forecast Lo 80 Hi 80 Lo 95 Hi 95 

2023 1204.954 1177.739 1232.168 1163.332 1246.575 

2024 1204.954 1166.466 1243.441 1146.092 1263.815 

2025 1204.954 1157.816 1252.091 1132.863 1277.044 

2026 1204.954 1150.524 1259.383 1121.71 1288.197 

2027 1204.954 1144.099 1265.808 1111.885 1298.022 

Forecasts from ARIMA(0,1,0)
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4.5. Diagnostic check of residuals 

The figure 4 shown is a residual plot for the ARIMA (0,1,0) 

model, which represents the differences between the observed 

and predicted values of grain yield over time. The residuals 

appear to fluctuate randomly around zero, indicating that the 

ARIMA (0,1,0) model effectively captures the underlying 

pattern in the data without systematic bias. However, the 

presence of some large spikes implies that certain unexpected 

factors or outliers may have influenced the yield, which the 

model could not fully account for. Overall, the residual plot 

supports the validity of the ARIMA (0,1,0) model for 

forecasting rice grain yield, with random and normally 

distributed errors indicating a well-fitted model. 

 

 
 

Fig 4: Residual plot 
 

ACF and PACF plots of residuals are shown in figure 5. The 

ACF plot of the residuals from the ARIMA model indicates 

that the model provides a good fit to the data. In the ACF plot, 

most of the autocorrelation values are within the 95% 

confidence limits, suggesting that the residuals are free from 

significant autocorrelation. The PACF plot of the residuals 

from the ARIMA model indicates that the model effectively 

captures the underlying structure of the data. In the plot, all 

partial autocorrelation values fall within the 95% confidence 

limits, suggesting that there are no significant lagged 

dependencies left unexplained by the model. This implies that 

the residuals behave like white noise, indicating that the 

model has successfully captured the temporal dependencies 

without overfitting or underfitting. Therefore, the ARIMA 

model can be considered well-specified and suitable for 

forecasting. This implies that the ARIMA model has 

effectively captured the underlying structure of the time series 

data.  

 

 
 

Fig 5: ACF and PACF of residual plots 
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5. Summary and conclusion 

The ARIMA (0,1,0) model was chosen as the best model for 

producing forecasts for up to five years for the rice grain yield 

in LTFE utilizing a 20-year time series data in this study. 

ARIMA was chosen because of its ability to anticipate 

utilizing time series data with autocorrelations between 

successive values in the time series and with any type of 

pattern. The study also found that the consecutive residuals in 

the fitted ARIMA time series were not associated, and that the 

residuals were not normally distributed. As a result, we may 

infer that the ARIMA (0,1,0) model chosen appears to be an 

appropriate forecasting model for the rice grain yield in 

LTFE. Despite the fact that ARIMA, like any other predictive 

model in forecasting, has limits in terms of prediction 

accuracy, it is nevertheless commonly employed for 

projecting future consecutive values in time series 
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