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Abstract 
Centromere specific CENH3 gene encoding a variant for histone H3 protein causes in-vivo haploid 

induction in maize. Chromosome duplication caused by colchicine therapy in haploids causes inbreds to 

become fully fixed after just one generation, as opposed to 6-7 generations of selfing in traditional 

methods. For in-vivo haploid induction, understanding of CENH3 proteins in segregation of 

chromosomes during cell division is therefore of vital importance. There is currently no online resource 

that can categorise unknown proteins into CENH3 proteins. In this study, our goal was to build a 

machine learning-based system for predicting the CENH3 protein of unidentified origin. Amino acid 

composition (AAC) was employed to construct random forest, decision tree and logistic regression 

classifiers to predict the CENH3 proteins. A total of 618 protein sequences were examined, including 309 

CENH3 sequences from different species and 309 Non-CENH3 sequences from Zea mays. The 

prediction of CENH3 proteins showed considerable promise using random forest and logistic regression 

classifiers. AAC achieved >98% prediction accuracies using random forest and logistic regression 

classifiers. Also, t-SNE technique could successfully separate two different classes of proteins in two-

dimensional space. The average accuracy scores from the cross-validation of the logistic regression and 

random forest models were promising while 10 folds of cross-validation using the k-fold method was 

performed. Hence, the cross-validation score also showed that each model had a promising ability to 

predict CENH3 proteins. The findings of the study can be applied to different crops before any 

experiments are conducted. 

 

Keywords: Haploid induction, CENH3, random forest, decision tree, logistic regression, and prediction 

 

1. Introduction 

Induction of haploid become a method of choice in many crop breeding programmes due to its 

logistic and economic viability (Gain et al. 2022). Haploid (n) stage in higher plants is 

generally considered a transition phase in the form of gametes produced from sporophytic 

diploid (2n) plants (Mahlandt et al. 2023) [17]. However, haploids may arise from several 

intergeneric, interspecific, and a few intraspecific crosses due to complete uniparental genome 

elimination (Watts et al. 2020) [27]. The first report of sporophytic haploid plants was published 

on the progeny of Nicotiana tabacum X N. sylvestris crosses by Clausen and Mann (1924) [3]. 

Haploids are of great practical significance in many plant breeding programmes as doubling of 

chromosome number yields a completely homozygous doubled haploid (DH) plant within two 

seasons as compared to 6 to 7 generations in conventional true breeding methods (Dutta et al. 

2022) [6]. The haploids can be created through in-vitro culture of microspores, anthers or 

ovules in several plant species (Dunwell 2010) [5]; however, it could not bring economic and 

logistic solutions to produce complete homozygous plants due to technical reasons. Therefore, 

haploid inducer (HI) based in-vivo methods could be a viable alternative for large scale 

production of DH required for the plant breeding programme. In maize, maternal and paternal 

haploids can be generated using the naturally existing mutation from the induction crosses of 

Stock 6 and Wisconsin 23 derived mutants; respectively (Coe 1959; Kelliher et al. 2017) [4, 12]. 

High frequency barley haploids were generated from the interspecific cross Hordeum vulgare 

and H. bulbosum (Kasha and Kao 1970) [11]. Subsequently, several intergeneric crosses were 

documented in oat x maize (Marcinska et al., 2013) [18] and wheat x maize (Laurie and 

Bennett, 1988) crosses to yield oat and wheat haploids due to uniparental loss of maize 

chromosomes. Another breakthrough came when Ravi and Chan (2010) [22] were able to  
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generate haploids in crosses between wild-type Arabidopsis 

plants and transgenic expressing engineered centromeric 

histone H3 (CENH3) protein. Since then, new opportunities 

opened for the development of HI lines through genetic 

engineering and allow production of haploids progeny 

without the need of in-vitro technique. 

CENH3 based haploidization has other potential applications 

in many crop species including polyploid as it offers as a tool 

to accelerate the mutagenesis screen for minimising the ploidy 

label. CENH3 is a variant of histone H3 protein present in 

centromeric nucleosomes and consists of two major domains. 

N terminal tail domain of CENH3 shares little similarity with 

conventional histone H3 whereas the C terminal histone fold 

domain (HFD) shows significant similarity with conventional 

histones (Watts et al. 2020) [27]. Mutation in CENH3 is lethal 

at the homozygous stage as chromosomes fail to segregate to 

poles at the time of cell division due to the loss of functional 

centromere. However, heterozygous CENH3 mutants are 

viable in both animals and plants (Ravi et al. 2014) [23]. 

Bulbosum technique in barley was governed by incompatible 

CENH3 spindle-fiber interactions between two species H. 

vulgare × H. bulbosum which leads to uniparental genome 

elimination (Sanei et al., 2011) [24]. An attempt was also made 

in B. juncea to produce haploids using CENH3 mediated 

genome elimination (Watts et al. 2020) [27]. Therefore, 

CENH3-based haploid induction can be targeted in other plant 

species to harness the benefit of the DH technology for the 

production of large-scale homozygous lines (Dutta et al. 

2022) [6]. Before starting any DH production facility, it needs 

a proper understanding of the responsive factors. The primary 

success of DH production mainly relies on a suitable haploid 

inducer system and can be exploited through CENH3-based 

genetic engineering in other crop species. However, there is 

limited information available in the computational facility that 

can predict the protein sequences with CENH3 properties. 

Therefore, the present study targeted for building a 

computational model that can allow us to predict the putative 

CENH3 protein in plant species.  

Machine learning based approaches are now commonly used 

in many circumstances for the prediction of a particular 

protein of interest (Meher et al. 2019) [20]. Computational-

based approaches are not restricted only to biological 

problems as it gets momentum in image processing, natural 

language processing and evolution (Meher et al. 2016) [19]. 

Machine learning and deep learning-based binary predictors 

were developed in the last two decades for the classification 

of a target protein of interest against the other proteins in a 

genome (Nielsen et al. 1999) [21]. There are several biological 

domains where machine learning techniques can be 

implemented in several biological domains including 

genomics, proteomics, microarrays, systems biology, 

evolution and text mining of biological sequences using 

natural language processing (NLP) (Larranaga et al. 2006) 
[15]. Therefore, the present context was relevant to develop a 

machine learning model for the prediction of CENH3 protein 

from the other unknown sequence. The developed model can 

be useful to gain prior knowledge before initiating any 

laboratory experiment. 

 

2. Materials and Methods 

2.1 Collection of datasets 

For classification of protein, both datasets belonging to 

CENH3 and Non-CENH3 proteins were retrieved from 

Uniprot database (http://www.uniprot.org/). The dataset with 

CENH3 proteins were used as positive dataset, whereas, Non-

CENH3 proteins were used as negative dataset for binary 

classification. Positive dataset was constructed with CENH3 

proteins from all the plant species available at Uniprot 

database. For negative dataset, randomised protein sequences 

of Non-CENH3 type were considered for maize to avoid the 

biased model building. Therefore, a total number of 309 

protein sequences of each positive and negative class of 

protein sequences (Total 618 protein sequences) were used for 

binary classification. 

 

2.2 Feature generation 

Feature generation from protein sequence is a critical step 

while building machine learning model. Numeric feature 

vectors were created from the strings of amino acids of each 

protein sequences. Here, sequence-based features were 

generated from each protein sequences to build the 

classification model. Feature include amino acid compositions 

(AAC) for classification of the proteins. AAC is the simplest 

and most widely used structural feature for representing a 

protein sequence (Bhasin and Raghava, 2004) [2]. It is the 

proportions of amino acid residues present in a protein 

sequence. For a protein sequence with N residues, AAC for 

the ith amino acid can be computed as AAC (i) = fi/N, where i 

= 1 to 20. Therefore, every protein sequence can be 

transformed into a vector of 20 numeric observations. 

Distribution of the amino acids in the CENH3 and Non-

CENH3 proteins were visualized using violin plot. 

 

2.3 Model building for protein structure prediction 

For the prediction of CENH3 proteins, a sample size of 247 

protein sequences was employed, and the remaining 62 

peptide sequences were included in the testing data set. Using 

various classifiers such as random forest, logistic regression 

and decision tree with default parameters, prediction accuracy 

for the protein was calculated. Balanced data set was used for 

classification of model to avoid the bias at the time training of 

the model.  

 

2.4 Model performance evaluation using confusion matrix  

Model performance was evaluated through analysis of the 

confusion matrix where actual and predicted DMP and non-

DMP proteins were presented as true positive (TP), false 

positive (FP), false negative (FN) and true negative (TN) 

categories. On the basis of actual and predicted observations, 

several scores were calculated (precision, recall, accuracy 

score, F1-score, matthew’s correlation coefficient (MCC)) to 

evaluate the performance of the predicted model.  

 

2.5 Cross validation of the model 

We used k-fold cross validation to execute 10 folds of cross 

validation on each model to analyse its performance. Mean 

accuracy scores of random forest, decision tree, and logistic 

regression classifiers were calculated to assess the 

performance of the model. Accuracy scores obtained for 10-

fold cross validation was visualized using the violin plot.  

 

2.6 Visualisation of dataset in two-dimensional space using 

t-SNE 

Data visualization has been considered as a powerful tool due 

to its efficiency in abstracting out the right information clearly 

and easily. For this purpose, t-distributed Stochastic 

Neighbour Embedding (t-SNE), an unsupervised, randomized 

algorithm, used for visualization. t-SNE introduced by van der 
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Maaten and Hinton (2008) [26] is a popular method for 

exploring high-dimensional data. The technique has become 

popular in the field of machine learning as it has the ability to 

embed hundreds or even thousands of dimensional data into 

two-dimensional space. t-SNE is the improvement of 

Stochastic Neighbour Embedding (SNE) introduced by van 

der Maaten and Hinton (2008) [26] that reduces Kullback-

Leibler (KL) divergence of scaled similarities of the points i 

and j in high dimensional (pij) and low dimensional (qij) space 

in such a way that 𝐾𝐿(P||𝑄) 𝑒𝑞𝑢𝑎𝑙𝑠 ∑𝑝𝑖𝑗𝑙𝑜𝑔
𝑝𝑖𝑗

𝑞𝑖𝑗
, where 𝑖 ≠ 𝑗. 

The KL divergence of the joint probabilities between original 

and embedded space will be minimized using gradient 

descent. t-SNE converts affinities of data points to 

probabilities, where affinities in embedded space are denoted 

by student’s t-distributions and affinities in original space are 

denoted by gaussian joint probabilities. t-SNE especially 

suitable to represent high dimensional and complex data in 

low dimensions due to heavy-tailed t-distribution as it 

preserves local neighbourhoods of the data efficiently and 

penalizes wrong embeddings of dissimilar points. t-SNE 

allows to group samples based on their local structure that 

might be useful to disentangle dataset visually. The low 

dimensional so generated is further used for the selected 

parameter for evaluation the performance. Two important 

hyperparameters namely perplexity and iteration were used 

for dimension reduction purpose. A perplexity value of 50 and 

an iteration value of 500 were used in combination for 

visualisation of the data.  

 

2.7 Statistical software used for analysis 

For data curation and labelling of the sample, Microsoft Excel 

Version 2019 was used. For feature generation using “protr” 

package of R programming language. All the statistical 

analysis was carried out in the Anaconda Jupiter Notebook 

integrated development environment (Python Version 3.7). 

Machine learning analysis was performed using numpy 

(1.13.1), sklearn (0.19.1), matplotlib (2.1.0), and pandas 

(0.20.1).  

 

3. Results 

3.1 Amino acid distribution of two different classes of 

proteins 

ACC of the CENH3 and Non-CENH3 proteins were 

calculated using all the protein sequences under study. The 

symbolic code of each amino acid was presented using single 

letter code- G: Glycine, A: Alanine, L: Leucine, M: 

Methionine, F: Phenylalanine, W: Tryptophan, K: Lysine, Q: 

Glutamine, E: Glutamic acid, S: Serine, P: Proline, V: Valine, 

I: Isoleucine, C: Cysteine, Y: Tyrosine, H: Histidine, R: 

Arginine, N: Asparagine, D: Aspartic acid, T: Threonine 

(Figure 1). In case of CENH3 proteins, the highest proportion 

of amino acid was recorded for R (Arginine) and A (Alanine) 

with the mean value of 12.06 ± 2.59 % and 11.58 ± 3.98 %, 

respectively. In contrast, C (Cysteine), W (Tryptophan), and 

Y (Tyrosine) showed the lowest proportion of amino acid in 

CENH3 proteins with the mean value of 1.16 ± 1.13 %, 1.26 

± 0.89 %, and 1.3 ± 0.95 %, respectively (Figure 1A). When it 

comes to Non-CENH3 proteins, A (Alanine), G (Glycine), 

and L (Leucine) had the highest percentages of amino acids, 

with mean values of 9.77 ± 3.01% and 8.63 ± 2.97%, and 8.87 

± 2.17 %, respectively. The lowest percentage of amino acids 

in Non-CENH3 proteins was found in the proteins W 

(Tryptophan) and C (Cysteine) with mean values of 1.22 ± 

0.85 % and 1.76 ± 1.37 %, respectively (Figure 1B). The 

distribution of other amino acids in the two different classes 

of proteins were visualized through box plot analysis in 

Figure 1. 

 

 

 
 

Fig 1: Distribution of twenty amino acids in the CENH3 (A) and Non-CENH3 (B) proteins. 
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3.2 Performance of different prediction models 

A sample sizes of 247 protein sequences were used for 

prediction of CENH3 proteins and remaining 62 peptides 

sequences were included in the testing data set. Prediction 

accuracies for the protein in the selected crop plants were 

given using different models with default parameters (Table 

1). The accuracy score using random forest, decision tree, and 

logistic regression were 98.40 %, 97.60%, and 98.40%, 

respectively. Precision scores were 96.90%, 96.80% and 

96.90% respectively using random forest, decision tree, and 

logistic regression. The recorded recall values using random 

forest, decision tree, and logistic regression were 1.00, 0.98, 

and 1.00, respectively. F1-scores for newly developed models 

were 0.984, 0.976, and 0.984 for random forest, decision tree, 

and logistic regression, respectively. Brier score was low with 

the recorded value of 0.016, 0.024, and 0.016 for random 

forest, decision tree and logistic regression, respectively. 

Therefore, the performance of random forest and logistic 

regression was slightly better than the decision tree model in 

terms of all the score matrices (Table 1). 

 
Table 1: Performance of the model using different classifiers 

 

Score Random forest Decision tree Logistic regression 

Accuracy 0.984 0.976 0.984 

Precision 0.969 0.968 0.969 

Recall 1.000 0.984 1.000 

F1-score 0.984 0.976 0.984 

MCC 0.968 0.952 0.968 

Brier score 0.016 0.024 0.016 

 

3.3 Cross-validation of the model performance 

To analyse the performance of each model, we performed 10 

folds cross validation using k-fold cross validation. The 

model performance was promising using random forest 

classifier with mean accuracy score of 98.05 ± 2.40 %. 

Similarly, logistic regression shows a promising cross 

validation score with mean value of 97.57 ± 2.20 %. Cross 

validation score using the decision tree was 96.43 ± 3.55 % 

which is slightly lower than the other two models used under 

study. Therefore, cross-validation score also revealed the 

promising performance of each model to predict the CENH3 

proteins. The results of the cross-validation score were 

visualized through a violin plot in Figure 2. 

 

 
 

Fig 2: Visualisation of cross validation of different models using 

violin plot. 

 

3.4 Two-dimensional visualization of two different classes 

of proteins using t-SNE 

Due to its effectiveness in clearly and quickly abstracting out 

the appropriate information, data visualisation has been 

regarded as a valuable tool. One of the key elements 

supporting the field of data analysis is the descriptive 

visualization of the full dataset. Nevertheless, because our 

data visualization is normally limited to two dimensions, 

dealing with datasets with multi dimension start generating 

complications. An unsupervised, randomized approach called 

t-distributed Stochastic Neighbour Embedding (t-SNE) was 

employed for visualization in this process. Perplexity and 

iteration, two crucial hyperparameters, were applied for 

dimension reduction. For the data visualization, a perplexity 

value of 50 and an iteration value of 500 were combined to 

visualize the CENH3 and Non-CENH3 properly (Figure 3). 

With few exceptions, t-SNE method could effectively 

separate two different kinds of data sets. 

 

 
 

Fig 3: Visualisation of twenty amino acids in two-dimensional 

space, 1: CENH3; 0: Non-CENH3. 

 

4. Discussion 

The possible uses for CENH3-based haploidization include a 

method to speed up mutagenesis screening for reducing the 

ploidy label. The centromeric nucleosome contains CENH3, a 

form of the histone H3 protein that has two primary domains. 

Whereas the C terminal histone fold domain (HFD) of 

CENH3 exhibits significant similarities with ordinary 

histones, the N terminal tail region of CENH3 displays little 

similarity with regular histone H3 (Watts et al. 2020) [27]. 

When CENH3 is mutated, it is fatal because the absence of a 

functioning centromere prevents chromosomes from 

segregating to the poles during cell division. Nonetheless, 

heterozygous CENH3 mutants live in both plants and animals 

(Ravi et al. 2014) [23]. Incompatible CENH3 spindle-fibre 

interactions between the two species H. vulgare and H. 

bulbosum, which result in the removal of the uniparental 

genome, rule the bulbosum technique in barley (Kasha and 

Kao 1970; Sanei et al., 2011) [11, 24]. With this understanding 

in mind, Kelliher et al. (2016) [13] attempted to use an RNAi 

construct to downregulate the maize CENH3 gene in order to 

induce haploidy in the plant. HIR, however, fell short of the 

desired range needed for DH generation. Furthermore, 

haploid production using CENH3-mediated genome deletion 

was attempted in B. juncea (Watts et al. 2020) [27]. The 

differentiation of haploid from diploid cells can be done using 

engineered green fluorescent protein (Ravi and Chan 2010; 

Kelliher et al. 2016) [22, 13]. 

The composition of amino acids or the frequency of amino 

https://www.thepharmajournal.com/


 

~ 5 ~ 

The Pharma Innovation Journal https://www.thepharmajournal.com 

acids in proteins is well conserved between species (Gilis et 

al. 2001; Itzkovit and Alon 2007) [9, 10]. Compositional 

changes have been connected to integral membrane proteins, 

cellular architecture, gene expression, and the rise in protein 

stability in response to environmental challenges including 

sulphur deprivation and high ambient temperatures 

(Zeldovich et al. 2007; Sterner and Liebel 2001; Friedman et 

al. 2004) [28, 25, 7]. The distribution of amino acids within a 

protein is not solely governed by its functional needs. Hence, 

it is unlikely that a historical incident led to a specialized 

makeup of amino acids found in natural proteins. The natural 

composition is expected to lower the metabolic cost of 

producing amino acids in some animals (Akashi et al. 2002) 
[1]. An amino acid frequency and the number of codons that 

correspond to it are tightly correlated, which raises the 

possibility that the composition is a product of the genetic 

code (King and Jukes 1969) [14] Yet, even in the presence of a 

stable genetic code, modifications to the underlying genome 

sequence can have an impact on the ratio of amino acids. In 

the current study, peptide sequences were mapped onto 

numeric feature vectors using the AAC dataset. These feature 

vectors were then used as input in the different models to 

predict CENH3 proteins. Also, it would be useful to 

understand how the AAC of CENH3 proteins function in 

relation to haploid induction and chromosome segregation is 

related to their compositional property. AAC was found to be 

predictive in this analysis when applied to three different 

models. In addition, t-SNE approach was capable of 

effectively separating two distinct data sets. We used k-fold 

cross-validation to execute 10 folds of cross-validation on 

each model to analyse its performance. Mean accuracy scores 

obtained from cross-validation of random forest and logistic 

regression were encouraging. Hence, the cross-validation 

score also demonstrated promising ability of each model to 

predict CENH3 proteins. 

The inability to conduct in-depth investigations of several 

such proteins in crops, particularly those implicated in in-vivo 

haploid induction, is significantly hampered by the lack of an 

online tool currently available to detect proteins with CENH3 

activity. Here, we also present the first computational 

machine learning model for differentiating the two protein 

groups (CENH3 and Non-CENH3) in maize. The established 

methodology is anticipated to be a supplement to 

transcriptional profiling and comparative genomics studies for 

the identification and functional annotation of genes 

important for in-vivo maternal haploid induction. The model 

will aid in the identification of CENH3 and Non-CENH3 

proteins as well as the functional annotation of CENH3 genes 

found in the genomes of maize. For the vast majority of 

experimental scientists working on in-vivo haploid induction 

research, the established model is important since it not only 

shows the direction in which future computational approaches 

will be created. This is the first instance of machine learning 

being used to find proteins in plants that act like CENH3. A 

web-based server portal for the discovery of unidentified 

proteins with CENH3-like activity can be made using the 

developed model. Using the random forest and logistic 

regression models with predefined parameters, researchers 

can easily discover CENH3 proteins throughout the proteome 

without diving into the nuances of the statistical methods used 

to build the strategy. 
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