www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2023; 12(5): 01-03 © 2023 TPI www.thepharmajournal.com

Received: 01-02-2023 Accepted: 04-03-2023

Prabhavathy Harikrishnan

Tamil Nadu Veterinary Animal Sciences University, Madras Veterinary College, Chennai, Tamil Nadu, India

M Vijaya Bharathi

Tamil Nadu Veterinary Animal Sciences University, Madras Veterinary College, Chennai, Tamil Nadu, India

KG Tirumurugaan

Tamil Nadu Veterinary Animal Sciences University, Madras Veterinary College, Chennai, Tamil Nadu, India

Corresponding Author:

Prabhavathy Harikrishnan Tamil Nadu Veterinary Animal Sciences University, Madras Veterinary College, Chennai, Tamil Nadu, India

Molecular studies on carrier status of bovine Anaplasmosis in and around Chennai

Prabhavathy Harikrishnan, M Vijaya Bharathi and KG Tirumurugaan

Abstract

A total of 34 blood samples were collected from different breeds of cattle came to large animal outpatient unit, Madras veterinary College in Chennai. The samples were collected with details of sample number, age, place and date of collection. Blood smear were taken from 34 animals and stained with cocktail preparation of Giemsa-leishman stain. Among 34 samples only one smear showed positivity for Anaplasma marginale and remaining 33 samples were negative. From the collected blood samples DNA was extracted and DNA purity was checked by Nano-drop method and PCR was performed. The PCR products were loaded in 1.5 percent agarose gel and view under gel-doc UV illuminator showed the presence of 427 bp. product of *Anaplasma marginale* in three samples. In the present study, the presences of *Anaplasma marginale* in healthy carrier's bovines were confirmed using microscopical and molecular techniques. Microscopy could detect only one positivity among 34 samples for *Anaplasma marginale*. No *Anaplasma bovis* could be detected by microscopy as well as by PCR. The present study clearly indicated that higher sensitivity and specificity for PCR to detect the *Anaplasma marginale* carrier in healthy animals.

Keywords: Anaplasmosis, subclinical anaplasmosis, carrier state of anaplasmosis, PCR

Introduction

Bovine anaplasmosis is an infectious disease of cattle caused by the obligate inter cellular bacterium. *Anaplasma marginale* which is of the order Rickettsiales (Hanzlicek). Anaplasmosis is one of the most prevalent and economically important rickettsial diseases through the country. Carrier animals can act as the source of infection for naïve hosts. Detection of *A.marginale* using a nucleic acid approach offers an alternative diagnostic tool, studies have been undertaken using this approach for its detection from carrier cattle (Noaman and Shayan, 2010)^[8].

The disease primarily occurs in tropical and subtropical regions and can provide significant issues regarding beef and dairy production potential if untreated. (Kocan).

Signs and symptoms include fever, weight loss, abortion, and potentially death (for cattle older than 2 years), although juvenile cattlelessthan9monthsoldareusuallyasymptomatic.Cattle who survive exposure to Anaplasma become immune to the disease; however, they carry the disease for life, which is a concern formative portions of the population (Hairgrove)

Materials and Methods

This data was conducted from 2021 November at large Animal Medicine unit, madras veterinary teaching hospital and consist of 34 blood samples collected from crossbred cattle cows which were brought to veterinary hospital. A total of 34 blood samples were collected from different breeds of cattle came to large animal outpatient unit, Madras veterinary College in Chennai. The samples were labelled properly with details of sample number, age, place and date of collection.

The blood samples were collected randomly from the cattle in heparinised EDTA vial as well as in serum tubes with peripheral blood smears. All the collected samples were brought to the laboratory, where the heparinised samples were kept in deep freezer i.e.-20 C till processing. LG (Leishman and Giemsa) cocktail was prepared by (Garbyal RS and Agarwal N, Kumar P,

2006)^[5]. The unit volume of Giemsa stock was filtered and mixed with an equal unit volume of distilled

water to prepare a Giemsa working solution (1:1 dilution from stock). (The dilutions can be

changed according to one's preference, up to 1:7.).

The Pharma Innovation Journal

An equal volume of Leishman's stain was filtered and mixed with an equal volume of the above Giemsa working solution (1:1). (The dilutions can be changed according to one's preference, up to 1:7.)

Isolation of Dna-Qiagen Dneasy Blood & Tissue Kit method of DNA

Extraction

- Add 300 µl of EDTA blood and add 100 µl of phosphate Buffer saline, vertex add 20 µl of Proteinase K into 2ml micro centrifuge tube and incubate at 56 °C for 10 minutes.
- 2. Vertex it. Add 200 μl of AL buffer, vertex it and incubate at 56 °C for 10 minutes, vertex.
- 3. Add 200 µl of Chilled absolute ethanol, vertex it and mix into spin column maximum capacity 600 µl.
- 4. Centrifuge at 8000 rpm for 3 minutes and discard, keep the spin column into another collection tube, add 500 μ l of AW1 (Alkaline wash) buffer, centrifuge at 8000 rpm for 2 minutes at room temperature. Discard the collection content.
- 5. Keep spin column into new collection tube, add 500 μ l of AW2 buffer, centrifuge at 8000 rpm at 2 minutes at room temperature and discard/empty the collection tube content.
- 6. Centrifuge the tubes at 14000 rpm for 3 min at room temperature.
- 7. Keep the spin column into new 1.5 ml centrifuge tube.
- 8. Add 30 μl of pre-treated Nuclease free water into spin column. Wait for 2minutes.
- 9. Centrifuge the tube contain 30 μ l of DNA stored at -20 °C.
- 10. This final pellet was used as template for PCR. Crude DNA isolated from the blood of an adult infected cattle of Chennai, Tamil Nadu formed the Positive control.

DNA Concentration

DNA concentration of 34 samples detected by Nano drop method using Thermo scientific Nano drop one- equipment.

Fig 1: Nano-drop equipment

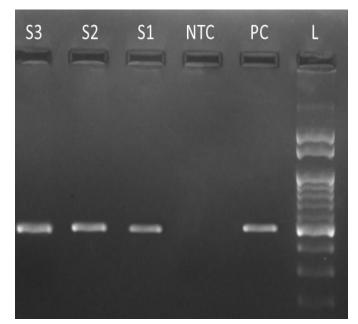


Fig 2: 1.5% Agarose gel PCR product of Anaplasma marginale

L – Ladder, PC- Positive control, NTC- Negative Control, S1 – Positive sample 1, S2- Positive sample 2, S3-Positive sample 3 (457 bp).

Fig 3: DNA Concentration curve - Good concentration value -1.8

PCR for the detection of A. marginale using primers amplifying msp5 gene with a product size of 457 bp was performed.

Table 1: PCR for 25 µl reaction

Master mix	12.5 µl
Forward primer	1 µl
Reverse Primer	1 µl
DNA	2 μl
NFW	8.5 µl

 Table 2: Negative control for primers

Master mix	12.5 µl
Forward primer	1 µl
Reverse Primer	1 µl
NFW	10.5 µl

Cycling Conditions for detection of *A. marginale* using primers amplifying msp5 gene

The cycling conditions were initial denaturation of 5 min at 95 °C, 35 cycles each consisting of denaturation at 9 5°C for 1

min, annealing 65 °C for 2 min and extension 72 °C for 1 min with a final extension 72 °C for 10 min followed by cooling to 4 °C. The reactions were performed using T100 thermal cycler.

After amplification/digestion reaction 5 μ l of the product was electrophoresed in an ethidium bromide-stained 1.5 percent agarose gel and visualised in a transilluminator under UV light. A 100 bp (Bangalore genei, India) ladder was used as molecular standard.

Results and Discussion

Only one *A. marginale* could be detected by microscopy. *A. marginale* was detected in one out of 34 LG (Leishman and Giemsa) cocktail-stained blood smear. Only one sample positivity was confirmed by Microscopy that was confirmed by PCR also. Two samples of *A. marginale* carrier was detected out of 34 samples that two carrier samples was not detected by Microscopy. Totally 3 samples were detected in PCR as positive.

The most important haemorickettsial organism affecting cattle of the study area was *A. marginale*. PCR showed the maximum sensitivity in detecting these organisms than microscopy.

In the present study, the presences of A. marginale and A. bovis in healthy Carriers bovines were confirmed using microscopical and molecular techniques. Microscopy could detect only one positivity among 34 samples for *Anaplasma marginale*. No *Anaplasma bovis* could be detected by microscopy as well as by PCR. Sreekumar *et al.* (2000) ^[10] could not detect A. bovis in a blood smear of infected animals. Microscopy is widely accepted technique for the diagnosis of haemoprotozoan and haemorickettsial organisms, but this technique lack high sensitivity. The present study clearly indicated that higher sensitivity and specificity for PCR. PCR assay showed high density and specificity than microscopy in detecting tick-borne parasites.

Anaplasmosis is one of the most prevalent and economically important rickettsial diseases through the country. Carrier animals can act as the source of infection for naïve hosts. Detection of A. marginale using a nucleic acid approach offers an alternative diagnostic tool, studies have been undertaken using this approach for its detection from carrier cattle (Noaman and Shayan, 2010)^[8]. In the present study, though the carrier animals did not exhibit any symptoms they remain patent to the vectors and remain silent source of infection to other susceptible animals (Kieser et al., 1990). The higher prevalence of Anaplasmosis in suspected crossbred animal indicates the presence of sub-clinical infection or carrier status of this disease. (B.) microplus was reported as the commonest tick species in Tamil Nadu (Koshy et al., 1982) [7]. The presence of biting flies (Tabenus spp. And Stomoxys spp.) due to hot and humid climatic conditions prevailing in the state may augument the mechanical transmission to the naïve animals.

The present study concluded that there age, breed, sex, season, acaricide application and prevalence. Losses due to this disease can be prevented by application of management practices and control over theses predisposing factors

References

1. Hanzlicek GA, Raghavan RK, Ganta RR, Anderson GA. Bayesian space-Time patterns and climatic determinants of bovine anaplasmosis, PLoS ONE, 11(3).

- Kocan KM, de la Fuente J, Blouin EF, Coetzee JF, Ewing SA. The natural history of *Anaplasma marginale*, Veterinary Parasitology. 2010;167(2-4):95-107.
- Hairgrove T, Schroeder ME, Budke CM, *et al.*, Molecular and serological in-herd prevalence of Anaplasma marginale infection in Texas cattle, Preventive Veterinary Medicine. 2015;119(1-2):1-9.
- Chen S, Dumler S, Bakken J, Walker D. Identification of a granulocyte *Ehrlichia* species as the etiologic agent of human disease. Journal of Clinical Microbiology. 1994;32:589-595.
- 5. Garbyal RS, Agarwal N, Kumar P. Leishman-Giemsa cocktail: An effective Romanowsky stain for air-dried cytological smears. Acta Cytol. 2006;50:403-6.
- 6. Keiser ST, Eriks IE, Palmer GH. Cyclic rickettsemia during persistent *Anaplasma marginale* infection in cattle. Infection and Immunity. 1990;58:2225-2230.
- Koshy TJ, Rajavelu G, Lalitha CM. Ecology and binomics of Boophilus of Tamil Nadu. Cheiron. 1982;11:25-30.
- 8. Noaman V, Shayan P. Comparisons of microscopy and PCR-RFLP for detection of *Anaplasma marginale* in carrier cattle. Iran. J Microbiol. 2010;2:89-94.
- 9. Shimada MK, Yamamura MH, Kawasaki P, Tamekuni K, Igarashi M, Vidotto O, *et al.* Detection of *Anaplasma marginale DNA in* larvae of *Boophilus microplus* ticks by polymerase chain reaction. The New York Academy of Sciences. 2004;1026:95-102.
- Sreekumar C, Anandan R, Balasundaram S, John L. Detection of E. bovis-like organism in cultured *Buffalo monocytes*. Tropical Animal Health and Production. 2000;32:67-72.
- Wilson KH, Blitchington RB, Greene RC. Amplification of Bacterial 16S ribosomal DNA with polymerase chain reaction. Journal of clinical Microbiology. 1990;28:1942-1946.