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Abstract 
Intensive agriculture which depends on unmanageable processes of agrochemical inputs is 

environmentally dangerous. The development of these practices to fulfil needs isn't always economically 

viable. Different practical aspects must be taken into consideration to satisfy the global meals protection 

undertaking. The plant microbiome has been related to stepped forwards plant productiveness for 

decades. Rhizospheric bacteria were studied for their capability to promote crop growth and control 

pathogens. In recent years studies on endophytes have accelerated as a likely alternative to rhizobacteria, 

for the improvement of Microbial inoculants able to changing some agrochemicals and reducing the 

environmental impact of agronomic management of crops. This review summarizes the maximum vital 

characteristics and traits of endophytic microorganism. The presence of rhizomes in soil favours the 

boom of numerous microbial groups in its rhizosphere. Presently endophytic microorganisms are gaining 

attention through researchers because of their functionality to synthesizing novel bioactive compounds 

which might be useful in ailment management of phytopathogens, and some of these compounds 

are critical in novel drug discovery. For sustainable agriculture, a number of the bacterial and fungal 

endophytes can be used as plant and soil inoculants to enhance yield and productiveness of plants. 

Using endophytes as biofertilizers is beneficial and has no unfavorable consequences on the weather, or 

texture and productiveness of soils, unlike chemical fertilizers. These endophytes may be act as essential 

biofertilizers, biocontrol agent and help plants to cope up with biotic and abiotic stresses. 

 

Keywords: Endophyte, rhizome, plant growth promoting, biocontrol, biofertilizer, pressure, sustainable 

agriculture 

 

Introduction 

Vegetation is accompanying with numerous groups of microorganisms. Some of the 

microorganisms that be inherent inside the plant without causing any harm to the host are 

endophytes. These microbes are inimitable in their diversifications to the precise chemical 

environment of the host plant (Jasmin et al., 2014b; Kumar et al., 2016b) [143, 75]. More than 

3,00,000 anticipated plant species exist on the earth and every character has been mentioned as 

host of 1 or more than one endophyte (Theantana et al., 2009) [126]. Endophytes are ubiquitous 

amongst terrestrial flowers, but only 6–7% of the endophyte’s existence has been recognized 

(Zhang et al. 2018; Ling et al. 2014; Saini et al. 2015; Hawksworth 2001) [140, 85, 108, 55]. 

Therefore, it's very important to explore the potential of micro-organism in sustainable 

agriculture or as a useful resource for novel bioactive compounds. The diversity and 

composition of endophytic bacterial communities rely on the supply, age, form of plant, 

season of sampling and also the surroundings. The variety of bacterial groups inside the 

endosphere of root is comparatively less than the rhizosphere or bulk soil (Liu et al., 2014; 

Bulgarelli et al. 2013) [86, 26]. In plant system, the concentration of endophytic microorganism 

is greater at the root area than at shoot tissue (Zinniel et al. 2002; Theantana et al. 2009; 

Rosenblueth and Martínez-Romero 2006; Degrassi & Carpentieri-Pipolo 2020; Baron & 

Rigobelo 2022) [142, 126, 106, 28, 18]. Due to its significant effect on various crops, it is considered 

one of the best agricultural compounds used in the agricultural sector. 

 

Plant Colonization with Endophyte  

Endophytic bacteria are commonly present in every plant including seeds, ovules, rhizomes, 

tubers, roots and stems and leaves (Alibrandi et al. 2018; Compant et al. 2011; Jasim et al. 

2014a; Kumar et al. 2016a; Gaiero et al. 2013; Sturz et al. 1997) [4, 34, 63, 74, 47, 123]. 

http://www.thepharmajournal.com/
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Generally, microbes enter into plant tissues via natural 

opening like stomata, lenticels, wounds, germinating radicles, 

etc. The entry of endophytes inside the plant tissues is at any 

point of their life cycle. Most of the reports regarding entry of 

endophytes inside the host plant are through wounds like 

broken trichomes, emergence site of root branches, or root 

hairs.  

The importance of lateral root formation for bacterial entry is 

underlined by the observation that Bacillus polymyxa was 

recovered from inside pine seedlings only after lateral roots 

had developed (Sturz et al. 1999) [122]. Wounds in plant 

tissues open entry for the endophytic microbes and might be 

formed by biotic factors like attack of nematodes and insects 

or abiotic factors like tillage, high temperature fluctuations, 

grafting, and root pruning (Quadt-Hallmann et al. 1997) [102]. 

The leakage of plant exudates from the wounded tissues 

allowed favorable conditions for infection and colonization of 

approaching microbes. However, endophytes can penetrate 

the plant cells actively as shown in Fig 1. This hypothesis is 

supported by the presence of cellulytic and pectinolytic 

enzymes produced by numerous endophytic bacteria like 

Azoarcus sp. (Hurek et al. 1994) [59], Azospirillum irakense 

and Pseudomonas fluorescens (Benhamou et al. 1996; Quadt-

Hallmann et al. 1997) [21, 102]. Cell membrane degradation by 

the bacteria secreted enzymes, observed when microbes 

colonized the roots. This activity can't be seen after 

colonization of microbes into the intercellular spaces of the 

foundation cortex. These suggest the induction of cellulase 

and pectinase enzyme by the endophyte for the penetration 

into the host plant microbial diversity within the rhizomes of 

various plant species A rhizome may be a modified 

subterranean stem diageotropic in nature develop from 

axillary buds at the lowermost nodes of the erect leafy shoot 

of the plant (Gizmawy et al. 1985) [49]. 

Endophyte distribution within plants depends on the 

flexibility to colonize and also the allocation of plant 

resources. Root endophytes often colonize and penetrate 

epidermis at sites of lateral root emergence, beneath the 

basis hair zone, and in root crevices. These colonizers are able 

to establish populations both intra- and intracellularly 

(Vurukonda et al., 2018; Suarez Moreno et al., 2019) [130, 124]. 

After initial colonization, some endophytes can migrate to 

other areas of the plant by entering vascular tissues and 

spreading systemically (Sandhya et al., 2017) [109]. Mahlangu 

et al., (2018) [90] reported the bacterial endophytes from 

surface-sterilized leaves of Pellaea calomelanos, a common 

fern.  

 

 
 

Fig 1: Mode of entry of endophytic bacteria in different parts of plant 

 

Diversity of endophytic rhizomes in the Different Plant 

Species 
The rhizomes of the plant developed from axillary buds, grow 

horizontally, and retain the power of upward growth of 

latest shoots (Jang et al. 2006) [62]. The rhizome also acts as 

storehouse of starches, proteins, and other nutrients, these 

nutrients used during the dormant period of the plants (Jang et 

al. 2006) [62]. Many authors reported the economic and 

pharmaceutical importance of rhizome or rhizome-derived or 

stored compounds (Hu et al. 2011; Koo et al. 2013) [57, 69]. For 

plant competitiveness and growth, underground stems or 

rhizomes of plant are of great importance (Hu et al. 2011) [57]. 

Rhizome remains in soil that favors growth of 

varied microbial communities, i.e., fungi and bacteria in its 

rhizosphere. Some microbes enter inside the tissues of 

rhizome and survive as endophyte.  

Number of physiological conditions, rhizome tissues is 

also colonized by diverse microbial communities and impart 

important role in normal functioning further as maintaining 

biotic or abiotic stress of the plant (Nongalleima et al. 2013; 

Barik et al. 2010; Xu et al. 2014) [95, 17, 136]. The variation in 

microbial communities largely depends upon host plant 

species, genotypes, plant developmental stages, host tissue 

types, growth locations, and growth seasons (Theantana et al. 
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2009; Shubin et al. 2014: de Almeida Lopes et al. 2016; Liu 

et al. 2014) [126, 112, 37, 86]. More than 129 bacterial 

genera are reported within which, 54 genera have also been 

found as endophytic bacteria (Seo et al. 2010) [110]. 

Pseudomonas, Bacillus, Azotobacter, Enterobacter, etc. are 

some common bacterial endophytes reported by different 

authors (Dias et al. 2009; Zhao et al. 2010; Liu et al. 2014; 

Jasim et al. 2014a, b; Kumar et al. 2016a, b; Singh et al. 

2013) [39, 141, 86, 63, 65, 74, 75, 115].  

Zingiber officinale (ginger) a common Indian spice and also 

used as home remedies. The rhizomes of ginger are reported 

as a potent antimicrobial, antioxidant, and anti-inflammatory 

and even have cancer-preventive activities because of array of 

chemical constituents (Aggarwal and Shishodia 2004; Jasim 

et al. 2014a: Anisha et al., 2018) [1, 63, 8]. Zhang et al. (2018) 
[140] reported 57 endophytic bacteria from ginger rhizome and 

classified them into genera Ochrobactrum, Acinetobacter, 

Stenotrophomonas, Enterobacter, Serratia, Pseudomonas, 

Bacillus, Agrobacterium, and Tetrathiobacter which showed 

rhizome ginger a storehouse or host of very diverse 

community of bacteria. Numerous authors also reported 

species from Pseudomonas, Stenotrophomonas, Enterobacter, 

Serratia, Bacillus, and Agrobacterium as endophytic strains 

from ginger (Koo et al., 2013; Chen et al. 2014; Jasim et al. 

2014b; Anisha et al., 2018) [69, 29, 65, 8].  

Turmeric (Curcuma longa L.) also belonging to 

the Zingiberaceae family, widely used as a spice and as a 

remedy extensively applied within traditional folk medicines 

(Amalraj et al. 2017; Kumar et al. 2016a, b) [74, 75]. The 

rhizome of turmeric contains natural phenolic compounds like 

curcuminoids, sesquiterpenoids, volatile oils and 

sesquiterpenes are broadly employed in the pharmacology for 

the treatment of varied human diseases (Ohshiro et al. 1990; 

Rao et al. 1995; Srimal 1997; Mukerjee and Vishwanatha 

2009; Panahi et al. 2014) [96, 104, 120, 93, 99]. The rhizome of the 

turmeric plant is present within the soil and supports number 

of microbial communities and interactions. Many authors 

reported different bacterial and fungal strains as 

endophytes within the rhizome of turmeric are like 

Paenibacillus sp. that are reported to provide indole-3-acetic 

acid (Aswathy et al. 2013) [13], while Klebsiella sp. is 

documented for plant growth promotion activity (Anisha et al. 

2013) [9] related to turmeric rhizome. Kumar et al. (2016a) [74] 

reported six endophytic bacterial strains Bacillus cereus, B. 

thuringiensis, Bacillus sp., B. pumilus, Pseudomonas putida, 

and Clavibacter michiganensis from the rhizome of 

turmeric. a number of the fungal endophytes have also been 

reported from the turmeric plant. Bustanussalam et al. (2015) 
[27] reported 44 fungi, while Jalgaonwala and Mahajan (2014) 
[61] reported Eurotium sp. as fungal endophytes. Krishnapura 

et al. (2016) [71] isolated endophytes from the rhizomes of 5 

different medicinal plants that belong to ginger family, and a 

complete of fifty endophytes (14 bacteria, 22 actinomycetes, 

and 14 fungi) were isolated from Curcuma longa, ginger, 

Curcuma amada, Hedychium coronarium, and galangal 

species. Details about the rhizome-associated endophytes 

with the various host plants are elucidated in Table 1.  

Dutta et al., (2016) [41] studied the accumulation of secondary 

metabolites in response to antioxidant activity of turmeric 

rhizomes co-inoculated with mycorrhizal fungi & 

rhizobacteria. 

 

Table 1: Some crop-associated bacterial endophytes and their plant-growth promoting traits 
 

Host plant Endophyte species Plant growth- promoting traits Reference 

Potato 

Bacillus spp. 
ACC deaminase activity, phosphate 

solubilization, siderophore production 
Gururani et al., 2013 [54] 

Streptomyces spp. PGP and biological control 
Vurukonda et al., 2018 

[130] 

Pseudomonas putida and Serratia 

plymuthica 

Production of the antibiotic 2,4-

diacetylphloroglucinol (Pseudomonas) and 

antagonism (Serratia 

Berg et al., 2005 [22] 

Burkholderia phytofirmans PsJN 
ACC deaminase activity and production of 

indole acetic acid (IAA) 

Weilharter et al., 2011 
[133] 

Rice 

Streptomyces sp. strain A20 

Production of three antibiotics: 

streptothricins D, E and F; production of 

siderophores and IAA, and P 

solubilization. 

Suarez Moreno et al., 

2019 [124] 

Bacillus sp. multiple PGP and antagonistic activity 
Etesami & Alikhani 2017 

[44] 

Azoarcus sp. BH72 N-fixation Krause et al., 2006 [70] 

Azospirillum sp. Production of IAA and ACC deaminase 
Wisniewski-Dye et al., 

2011 [134] 

Pseudomonas stutzeri N-fixation Yan et al., 2008 [138] 

Burkholderia sp., Antifungal activity Kwak MJ et al., 2012 [80] 

Kosakonia oryzae 
Siderophore production, auxin 

biosynthesis and N-fixation 
Meng et al., 2015 [91] 

Herbaspirillum, Pseudomonas, 

IAA, N-fixing, P solubilization, ACC 

deaminase, etc. 

Chi et al., 2005 [31] 

Bertani et al., 2016 [23] 

Pantoea, Methylobacterium, 

Kosakonia, Burkholderia, 

Rhodococcus, Ralstonia, 

Brevibacillus, Bacillus 

Soybean B. subtilis and B. thuringiensis 
Production of siderophores, IAA synthesis 

and ACC-deaminase 
Bai et al., 2003 [15] 

 
Pseudomonas, Ralstonia, Enterobacter, 

Pantoea and Acinetobacter 

Antifungal activity; phytases; N-fixation; 

phosphate solubilization 

Kuklinsky-Sohral et al., 

2004 [72] 
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 Bacillus spp. Cellulase, pectinase and motility 
Hung & Annapurna 2004 

[58] 

 

Agrobacterium, Enterobacter, Kosakonia, 

Pantoea, Pseudomonas, Ralstonia, Serratia, 

Rhizobium, Stenotrophomonas, etc. 

Production of IAA and 

exopolysacchardies, P solubilization, etc. 

De Almeida et al., 2016; 

Carpentieri-Pipolo et al., 

2019 [58, 28] 

 

Enterobacter sp., Bacillus sp., Variovorax 

sp., Serratia sp., Burkholderia sp., Pantoea 

sp., Kosakonia sp. 

Antimicrobial activity 
De Almeida et al., 2018 

[36] 

Wheat 

Bacillus subtilis 
 

Antifungal activity against Puccinia 
Li et al., 2013 [84] 

Bacillus cereus 
Biofilm formation, colonization and 

biocontrol 
Xu et al., 2014 [136] 

Bacillus thuringiensis Biocontrol  

Azospirillum sp 
Phytormone synthesis: IAA, GA, ABA; 

phosphate solubilization 
 

Arthrobacter sp. 
Siderophore-production and Zn 

solubilization 
Singh et al., 2018 [114] 

Burkholderia cepacia Plant growth promotion Wang et al., 2010 [132] 

Sugar Beet 
Bacillus pumilus, Chryseobacterium 

indologene, Acinetobacter johnsonii 

increased concentration of carbohydrates 

and growth photosynthetic efficiency 
Shi et al., 2010 [111] 

Sugar Cane 

Gluconacetobacter diazotrophicus 

N-fixation, plant growth promotion, 

secretion of organic acids, synthesis of 

auxin and bacteriocins 

Bertalan et al., 2009 [19] 

Azospirillum amazonense, Burkholderia 

tropica, Herbaspirillum seropedicae, H. 

rubrisubalbicans, Gluconoacetobacter 

diazotrophicus 

acceleration of budding; increase in 

biomass; N-fixation; production of 

siderophores and IAA; phosphate 

solubilization 

Oliveira et al., 2009; de 

Silva et al., 2012 [97, 113] 

Tomato 

Bacillus subtilis 
Control of Alternaria solani and 

Phytophthora infestans 

Chowdappa et al., 2013 
[33] 

Burkholderia phytofirmans PsJN IAA synthesis, ACC deaminase 
Weilharter et al., 2011 

[133] 

Sphingomonas sp. Prodution of gibberellins and IAA Khan et al., 2014 [68] 

Common Bean 
Microbacterium testaceum 

Inhibition of bacterial pathogens and 

quorum sensing 
Lopes et al., 2015 [87] 

Rhizobium endophyticum Solubilization of phytate Lopes et al., 2010 [88] 

Maize 

Bacillus spp. 
Production of lipopeptides active against 

Fusarium moniliforme 
Gond et al., 2015 [52] 

Azospirillum brasilense Plant growth promotion Ferreira et al., 2013 [45] 

Enterobacter sp. 
Improved photochemical efficiency and 

flowering anticipation; N-fixation 
Naveed et al., 2014 [94] 

Paenibacillus polymyxa N-fixation and growth promotion Puri et al., 2016 [101] 

Pseudomonas spp., Enterobacter asburiae, 

Sinorhizobium meliloti 
PGP traits and antifungal activity Sandhya et al., 2017 [109] 

Canola 

Bacillus subtilis Antibacterial and antifungal activity Lahlali et al., 2013 [82] 

Burkholderia phytofirmans 
ACC deaminase activity and production of 

IAA 

Weilharter et al., 2011 
[133] 

Coffee 

Escherichia fergusonii, Acinetobacter 

calcoaceticus, Salmonella enterica, 

Brevibacillus choshinensis, Pectobacterium 

carotovorum, Bacillus megaterium, 

Microbacterium testaceum, Cedecea davisae 

Production of phosphatase and indol acetic 

acid; control of coffee leaf rust, Hemileia 

vastatrix 

Silva et al., 2012 [113] 

 

Applications of endophytic strains of rhizome  

Role of endophytes in plant growth promotion 

Endophytic bacteria can affect plant growth between species 

and strains, so there are usually several ways in which plant 

growth is promoted by endophytes, not by a single 

mechanism. Research has been directed regarding the plant 

growth promoting bacterial endophytes may directly or 

indirectly affect plant growth (Jasim et al., 2013) [64]. Direct 

stimulation of plant growth occurs when either (i) the bacteria 

that promote plant growth are able to obtain resources from 

the environment, including potassium, nitrogen, phosphorous 

and iron; (ii) modulate plant growth by providing or 

regulating various plant hormones including cytokinins, auxin 

or ethylene. Indirect promotion of plant growth by endophytic 

bacteria through the production of metabolites, HCN and 

antibiotics against pathogenic bacteria and fungi. PGPR 

strains ensure nutrient availability, promote plant growth, 

increase nutrient use efficiency, and reduce biotic and abiotic 

stresses (Kumar et al. 2015a, b, c, 2016a, b) [78, 76, 77, 74, 75]. 

However, the degree of efficiency of PGPR can vary with 

crops, cultivars or species, cultural conditions and inoculant 

strains (Zandi and Basu 2016) [139].  
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Fig 2: Schematic presentation of role of endophytic bacteria in plant development 

 

Biological nitrogen fixation 

Nitrogen (N) is needed by all organisms to synthesize 

biomolecules such as proteins and nucleic acids. Nitrogen is 

provided to agricultural land by the use of urea and 

ammonium nitrate as chemical fertilizers. Microorganisms 

with biological nitrogen fixation (BNF) capability are 

responsible for the reduction of N to ammonia (NH) (Glick et 

al. 1999; Glick 2014) [51, 50]. Rhizobium is the best example of 

nitrogen fixer which fixes nitrogen permanently. These 

microorganisms were traditionally thought to be responsible 

for the legume infection process, although rhizobia can also 

behave as endophytes in nodules and frequent isolation of 

rhizobial strains from nodules often promotes plant growth. 

Endophytic rhizobia isolated from nodules after sequencing of 

various genes were classified into the genera Encifer and 

Schinella as well as species Rhizobium tropici (Balogh et al. 

2010; Frampton et al. 2012) [16, 46]. Non-availability of good 

quality seed for low yield and the absence of effective 

rhizobial inoculation was reported (Jha et al., 2011; Gururani 

et al., 2013) [66, 54]. Besides rhizobial endophytes, some 

promising non-rhizobial endophytic biofertilizers include 

members of Azorcus, Achromobacter, Burkholderia, 

Gluconoacetobacter, Herbaspirillum, Klebsiella and Serratia 

(Choudhary et al. 2011) [32]. Efficient N supply by endophytic 

diazotrophic bacteria in sugarcane and cultivar grass suggests 

a possible pathway for biological nitrogen fixation in plant 

interior niches. It is clear from reports that the main 

contributor to endophytic biological nitrogen fixation in 

sugarcane is Gluconoacetobacter diazotrophicus (Acetobacter 

diazotrophicus), and that it has the ability to fix N to 

approximately 150 kg N ha−1 (García-Fraile et al. 2015) [48]. 

Azoarcus is recognized as another potential N2-fixing 

obligate endophytic diazotroph (Hurek et al., 1994) [59]. This 

cultivar settles in the roots of grasses, and increases grass 

yield by 20–40 t ha−1 year–1 year–1 in saline sodic, alkaline 

soils without the addition of any N fertilizer (Vejan et al. 

2016; Kumar et al. 2016a, b) [127, 74, 75]. Rohini et al., (2018) 
[105] studied the remarkable effect of endophytic bacteria as 

plant growth promotion on ginger rhizome. Carpentteri-

Pipolo et al., (2019) [28] studied on significant positive effect 

of endophytic bacteria associated with transgenic and non-

transgenic soyabean plant. Kushwaha et al., (2020) [79] 

reported the significant plant growth promoting and 

antifungal activity of endophytic Bacillus strains from pearl 

millet. The study showed that the endophytic Bacillus possess 

excellent biocontrol and pearl millet growth promotion 

activities. Rana et al., (2021) [103] studied the effect on plant 

growth promotion of maize (Zea may L.) by the endophytic 

bacteria. These investigations suggest that endophytic 

diazotrophs have great potential to increase productivity of 

non-legumes, including important cash crop plants (Singh et 

al. 2017b, c: Zhang et al., 2018; Degrassi & Carpentierri 

2020; Baron et al., 2022) [118, 1117, 140, 38, 18]. 

 

a) Phosphorus solution 

Phosphorus is an essential macronutrient for plant growth and 

development involved in important metabolic pathways such 

as photosynthesis, biological oxidation, nutrient uptake and 

cell division (Antoun 2012) [10]. Soils around the world are 

supplemented with inorganic P in the form of chemical 

fertilizers to support crop production but repeated use of 

fertilizers results in poor soil quality (Miller et al. 2010) [92]. 

Hence, the current scenario is moving towards more 

sustainable agriculture. A large amount of phosphorus exists 

in insoluble forms and is not readily available for plant 

growth. Organic and inorganic compounds, mainly in the 

form of insoluble mineral complexes, are the major sources of 

P available in soil (Wang et al. 2007; Oteino et al. 2015; 
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Singh et al., 2018) [131, 98, 114]. Phosphate-soluble bacteria 

soluble inorganic soil phosphates, such as FePO4, Ca3(PO4)2 

and AlPO4, through the production of siderophores, organic 

acids and hydroxyl PGPB in agricultural soils (Yadav & 

Yadav 2017; Vinayarani & Prakash 2018) [137, 128]. Endophytic 

bacteria have the ability to solubilize phosphate, and it was 

suggested by the authors that endophytic bacteria from 

soybean may also participate in phosphate assimilation (Dutta 

2014) [41]. Application of phosphate-soluble bacteria increases 

soil fertility because of their ability to convert insoluble P into 

soluble P by releasing organic acids, chelation, and ion 

exchange (Lee et al., 2017) [83]. Positive effects of P 

solubilizers have been reported on food and fodder crops 

(Rohini et al., 2018) [105]. Bader et al., (2020) [14] suggested 

that native trichoderma harzianum strains induce phosphorus 

solubilization and control wilt disease on tomato (Solanum 

lycopersicum L). Chen et al., (2021) [30] reported that 

multifunctional phosphate solubilizing bacteria significantly 

increased soil nutrient content and enzyme activity were, such 

as total N, total P, total K, AP, AK, soil urease, cellulase, 

sucrase, dehydrogenase, nitrate reductase and acid 

phosphatase in Chinese fir seedlings. Increased enzyme 

activity was significantly associated with increased nutrient 

content. 

 

b) Potassium solubility 

Potassium (K) is the third important nutrient required for 

plant growth and endophytic bacteria are capable of 

solubilizing the insoluble form of potassium. Potassium 

soluble microorganisms may provide an alternative technique 

for making potassium available by plants (Vurukonda et al., 

2018; Degrassi & Carpentieri-Pipolo 2020) [130, 38]. A wide 

range of bacteria such as Pseudomonas, Burkholderia, 

Acidothiobacillus ferrocidans, Bacillus mucilaginosus, 

Bacillus edaficus, B. circulans and Paenibacillus sp. It has 

been reported to release potassium in an accessible form from 

potassium-rich minerals in the soil (Naveed et al., 2014) [94]. 

These potassium soluble bacteria (KSBs) were found to 

dissolve potassium, silicon and aluminum from insoluble K-

bearing minerals such as micas, elite and orthoclase by 

excreting organic acids, either directly from the rock or 

chelated silicon ions was dissolved so that K could be brought 

into solution. (Singh et al., 2017). Thus, the application of K-

soluble bacteria as a biofertilizer for agricultural improvement 

can reduce the use of agrochemicals and support 

environmentally friendly crop production (De Almeida et al., 

2018) [36]. 

 

c)  Siderophore production 

In plant growth promoting bacteria, the iron in the Fe3+-

siderophore complex on the bacterial membrane is reduced to 

Fe2+, which is further released from the siderophore into the 

cell via a gating mechanism. Binding of the siderophore to the 

metal increases the concentration of the soluble metal 

(Goswami et al. 2013) [53]. Bacterial sideophores are released 

upon elimination of high levels of heavy metal contamination 

and plants assimilate iron from bacterial siderophores through 

various mechanisms, for example, release of chelate and iron, 

direct uptake of the siderophore–Fe complex, or by a ligand 

exchange. response (Arora et al. 2013) [11]. Several studies 

have been reported of promoting plant growth as compared to 

siderophore-mediated iron-uptake as a result of siderophore 

producing rhizobacterial inoculation. Researcher also 

Evaluated the role of the siderophore-producing Pseudomonas 

strain GRP3 on the Vigna radiata for iron nutrition. After 45 

days, plants showed a decline in chlorotic symptoms and 

increased iron, chlorophyll a and chlorophyll b content in 

strain GRP3 inoculated plants compared to controls (Kumar et 

al. 2016a, b: Singh et al., 2018) [74, 75, 114]. 

 

d) Production of indolic compounds 

Microbial synthesis of the Phytohormone Auxin has long 

been well-known (Vinayarani & Prakash 2018) [128]. It is 

reported that 80% of microbes isolated from the rhizosphere 

of various crops have the ability to synthesize and release 

auxins as secondary metabolites. Indole acetic acid (IAA) 

affects the division, expansion and differentiation of plant 

cells; stimulates the germination of tubers and seeds; 

Increases the rate of root and xylem growth; Lateral starts; 

controls the processes of vegetative growth and adventitious 

root formation; pigment formation, biosynthesis of various 

metabolites, mediating reactions to light, gravity and 

inflorescences; Affects photosynthesis and resistance to 

stressful situations. IAA possibly produced by plant growth 

promoting bacteria; Delay the above physiological processes 

of plants by altering the plant auxin pool. Additionally, the 

bacterium IAA increases the surface area and length of the 

root, and thus gives the plant greater access to soil nutrients 

(Yadav & Yadav 2017: Carpentieri-Pipolo 2019) [137, 28]. 

Similarly, production of IAA in bacteria relaxes cell walls and 

enhances the release of exudates and also provides additional 

nutrients to support the growth of other supporting bacteria of 

the rhizosphere. Thus, the endophytic bacterium IAA is 

recognized as an effector molecule in plant–microbe 

interactions in both pathogenesis and phytostimulation 

(Boiero et al. 2007; Sandhya et al., 2017) [24, 109]. Bader et al., 

(2020) Native trichoderma harzianum strains produce indole-

3 acetic acid on tomato (Solanum lycopersicum L.) and 

showed significant plant growth. 

 

e) 1-Aminocyclopropane-1-Carboxylate (ACC) Uses 

Normally, ethylene is an essential metabolite for the normal 

growth and development of plants Glick 2014) [50]. This plant 

growth hormone is produced endogenously by almost all 

plants and is also produced by various biotic and abiotic 

processes in the soil and is important in inducing diverse 

physiological changes in plants. Stress conditions such as 

waterlogging, drought, salinity, heavy metals and 

pathogenicity result in an increase in endogenous levels of 

ethylene which negatively regulates overall plant growth and 

leads to discoloration and alterations in other cellular 

processes that contribute to crop growth. Affects performance 

a lot (Spaepen and Vanderleyden 2011) [119]. At present, 

bacterial strains exhibiting ACC deaminase activity in a wide 

range of genera such as Acinetobacter, Achromobacter, 

Agrobacterium, Alcaligenes, Azospirillum, Bacillus, 

Burkholderia, Enterobacter, Pseudomonas, Ralstonia, 

Serratia and Rhizobium etc. have been identified (Ali et al., 

2014) [3]. Such bacterial endophytes trap the ethylene 

precursor ACC and convert it to 2-oxobutanoate and ammonia 

(Baron & Rigobela 2022) [18]. Puri et al., (2016) [101] showed 

that some forms of stress are rejected by producers of the 

enzyme ACC deaminase, such as phytopathogenic 

microorganisms (viruses, bacteria and fungi etc.), and heavy 

metals, radiation, wounds, insect predation, high salt 

concentration. Flood resistance to extreme temperatures, high 

light intensities, and stresses from polyaromatic 

hydrocarbons. 
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Pandey and Gupta (2019) [100] reported that in vivo study of 

ACC deaminase producing bacteria promote plant growth 

both under normal and saline conditions. The production of 

ACC deaminase and other PGP traits by these isolates project 

the potential that they could be used as a bio-fertilizer under 

both normal and saline soils. Dubey et al., (2021) [40] studied 

characterization of bacterial root endophytes for competence 

and plant growth promotion in soybean (Glycine max (L.) 

Merr.) under drought stress. Among these three endophytes, 

AKAD A1-16 performed better than AKAD A1-2 and AKAD 

A1-1, which was further validated by the ability to produce 

the enzyme 1-aminocyclopropane-1-carboxylate (ACC) 

deaminase in the following order: AKAD A1-16 > AKAD 

A1-2 > AKAD A1-1. 

 

f) Ammonia emissions 

Ammonia can be produced by several processes such as 

nitrite ammonification, degradation and decarboxylation, 

deamination, urea-mediated hydrolytic degradation of urea, 

and this ammonia produced by bacteria is taken up by plants 

as a source of nitrogen for their growth (Chen et al., 2014) [29]. 

Normally, all free-living rhizospheric microbes and some 

symbiotically associated with the plant fix nitrogen that can 

be used by the plant for growth, for example, 

Gluconacetobacter, Herbaspirillum, Azospirillum, Bacillus, 

Enterobacter, Klebsiella, Pseudomonas and Burkholderia. 

These bacteria are appreciated for their importance in 

agricultural fertility (Awasthy et al., 2013; Kumar et al., 

2018) [13]. 

 

g) Production of metabolites 

 Secondary metabolites are produced either for signalling or 

defence or in the process of establishing their interaction with 

the host plant. Microorganisms are used to control various 

diseases in what is known as a biological and eco-friendly 

approach (Rohini et al., 2018) [105] and these microbes are 

known as biocontrol agents. The main activities employed by 

PGPR in biological control and niche exclusion, competition 

for nutrients, induced systemic resistance and antifungal 

metabolites (Yadav & Yadav 2017) [137]. Several rhizobacteria 

have been reported to produce antifungal metabolites such as 

pyrrolnitrine, phenazine, 2,4-diacetylfluoroglucinol, 

pileutorin, HCN, viscocinamide and tensin. Some species of 

bacteria produce and excrete hydrogen cyanide (HCN) which 

is a potent inhibitor of cytochrome c oxidase and many other 

metalloenzymes. HCN is a metabolite and has no role in 

primary metabolism. Proteobacteria contain HCN synthase 

which is a membrane bound flavoenzyme that oxidizes 

glycine, producing HCN and CO. GacS/GacA (global control) 

is a two-component system that controls the expression of the 

HCN gene cascade. This regulation of secondary metabolism 

expresses itself during the transition from exponential to 

stationary growth phase (Singh et al., 2017c, 2018; 

Vinayarani & Prakash 2018) [117, 114, 128]. It was found that 

cyanide produced by the P. fluorescens strain CHA0 is part of 

the biocontrol ability that suppresses fungal diseases on plant 

roots. Some bacterial endophytes synthesize antibiotic 

substances that inhibit the growth of certain plant pathogens. 

Serratia mercescens and Bradyrhizobium sp., both play 

important roles in plant growth promotion and biocontrol by 

producing siderophores, IAA, HCN and P solubilization 

(Singh et al., 2017b; Vurukonda et al., 2018) [118, 130]. Ahmed 

et al., (2020) reported that endophytic metarhiziumrobertsii 

promotes maize growth and alters the plant defense gene 

expression. Previous studies have shown that the synthesis of 

multiple bioactive secondary metabolites, including alkaloids, 

sesquiterpenes, polyketones, lactones, organic acids, 

cyclopeptides, flavonoids, and saponins, with novel 

applications can be accomplished by endophytes present in 

host plants (Ek-Ramos et al., 2019; Wu et al., 2021) [43, 135]. 

 

h) Field effectiveness of endophytes 

The effect of plant growth promoting rhizobacteria in crop 

productivity varies due to the unstable environment under 

greenhouse, field tests and laboratory and it is sometimes 

difficult to obtain approximate results. Climate 

heterogeneities also have a great impact on the growth 

success of plants that promote rhizobacteria, but sometimes 

unfavorable growth conditions in the region are expected as 

normal functioning of agriculture is performed.  

Do not act independently of each other, but additively IAA, 

phosphate solubility, N2 fixation, siderophore Biosynthesis, 

ACC deaminase and antifungal activity, etc. are responsible 

for promoting plant growth and increasing yield. Both natural 

agro-ecological locations and controlled soil environments 

result in significant increases in the yields of various crops. 

Due to the prevailing worldwide hesitation to encapsulate 

foods produced by genetically modified plants, PGPR as a 

bioinoculant may be beneficial for promoting plant growth. 

Widespread use of PGPR can reduce worldwide dependence 

on agrochemicals. Likewise, it is a technology that is happily 

practical for farmers in both developed and developing 

countries. Some research has shown that endophytes can 

significantly increase yields in various crops after their 

inoculation. To reveal the effects of endophytes, various 

vaccination experiments have been conducted Zhang et al. 

(2018) [140] reported that three out of 14 endophytes improved 

soybean nodulation and plant weight when combined with 

Bradyrhizobium japonicum. Suryadevara and Ponmurugan 

(2012) reported the effect of endophytes on soybean plant 

growth and development, with two isolates having a positive 

effect on root weight. These isolates increased the total plant 

biomass by more than 80% compared to the uncultured 

control. Boominathan and Sivakumaar (2012) [25] reported in 

their study that endophytic bacterial inoculation had a 

significant effect on seed germination, root and hypocotyl 

development of Solanum nigrum seedlings; 37 out of 77 

different seedlings increase vigor. Of these 37 isolates, 22 

improved seed germination by 100% compared to uninfected 

controls.  

Kumar et al. (2016b) [75] assessed the effects of non-rhizobial 

endophytes from surface sterilized root nodules of Medicago 

sativa L. on the growth of alfalfa. Coinfection of all 

endophytic strains with Sinorhizobium meliloti significantly 

increased the nodule number of alfalfa, but had no significant 

effect on growth parameters with respect to vaccination with 

individual Sinorhizobium meliloti. Vaccination of 

Pseudomonas sp. in home conditions. PS1 in Greengram 

greatly increased plant dry weight, leghemoglobin, root N, 

shoot N, root P, shoot P, nodule number, total chlorophyll 

content, seed yield and seed protein (Singh et al. 2017a, b) 
[116, 118]. Kumar et al. (2014) [73] used Azotobacter 

chroococcum for inoculation in the rhizome and observed 

enhancement in leaves number, shoot height, shoot and 

rhizome biomass as well as curcumin content in turmeric 

plant. Similarly, Dutta and Neog (2016) [42] described that the 

nonrhizobial nodule-associated bacterial (NAb) isolate 

M2N2C and B1N2B (Exigubacterium sp.) showed maximum 
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positive PGP traits. Under home conditions, NAb segregated 

when combined with the rhizobial strain - S. meliloti, with 

respect to plant root and shoot length, chlorophyll content, 

nodulation efficiency and increase in nodule dry weight. 

Promotes growth. Under field conditions, P. putida strain R-

168, P. fluorescens strain R93, P. fluorescens DSM 50090, P. 

putida DSM291, A. lipoferum dsm 1691, a. Brasilens DSM 

1690 inoculation in maize crop showed an increase in plant 

height, seed weight, number of dry weights per ear, leaf area 

and shoot (Kumar et al. 2015c, 2017, 2018) [77]. Similarly, 

Rohini et al. (2018) [77, 105] reported that Pseudomonas 

fluorescens PGPR1, PGPR2, PGPR4 in peanut (Arachis 

hypogaea L.) significantly increased pod yield and nodule dry 

weight over control under both laboratory and field 

environment. Bradyrhizobium sp. 750, Pseudomonas sp., 

Lupinus luteus resulted in both increased biomass, nitrogen 

content, accumulation of metals (improved phytostabilization 

capacity) under Ocrobactrum psittici inoculation field 

conditions (Krishnapura et al. 2016) [71]. Lee et al. (2017) [83] 

also stated that Pseudomonas sp. In wheat field and soybean, 

increased soil enzyme activities, total productivity and 

nutrient uptake. 

Asghari et al., (2020) [12] Induction of systemic resistance 

to Agrobacterium tumefaciens by endophytic bacteria in 

grapevine The findings revealed the efficacy of the selected 

endophytic bacteria in triggering grapevine resistance 

against A. tumefaciens and the possible use of these strains as 

an alternative to chemical control methods in grapevine crown 

gall disease management. Igiehon et al., (2021) [60] studied the 

effects of rhizobia and arbuscular mycorrhizal fungi on yield, 

size distribution of soybean seeds grown under drought stress. 

The bacteria that were found in the rhizospheric soil were 

Verrumicrobia, Proteobacteria, Firmicutes, Bacteroidetes, 

Planctomycetes and Nitospira. suggesting that the rhizobia 

and fungi used can also improve soil microbial diversity.  

 

i) Biocontrol Activity 

Functional basis of biocontrol activity of diverse endophytic 

microorganisms has provided deeper insight on interaction 

between the microbes and plants (Alstrom 2001) [5]. 

Endophytic strains inhibit the growth or infection of pathogen 

or proliferation within the host directly via antibiosis, 

synthesis of cell wall-degrading enzymes, production of 

antibiotics, and competition indirectly via inducing resistance 

responses intrinsic to host (Benhamou and Chet 1996; Lahlali 

and Hijri 2010; Kumar et al. 2014, 2015c; Singh et al. 2017b) 
[81, 20, 77, 118]. Endophytic fungi also provide protection from 

phytopathogens, impart resistance to abiotic stress, and also 

enhance plant growth (Anisha et al. 2018) [8]. They also 

activate induced systemic resistance (Vu et al. 2006) [129] and 

induce secondary metabolite production in plant, which may 

convert plant metabolites to antifungal agents. These multi-

beneficial impacts of endophytes are very significant as they 

have commercial potential as agents for successful sustainable 

agriculture (Kauppinen et al. 2016) [67]. Many of the 

endophytic strains isolated from the rhizome of different 

plants have also biocontrol potential. Sabu et al. (2018) [107] 

reported endophytic strains of Burkholderia vietnamiensis 

isolated from Zingiber officinale having inhibition potential 

against Pythium myriotylum in vitro. In another study 

Vinayarani and Prakash (2018) [128] isolated 31 endophytic 

strains from the rhizome of turmeric and screened their 

antagonistic activity against Pythium aphanidermatum and 

Rhizoctonia solani the causal agent of rhizome rot and leaf 

blight diseases in turmeric, respectively. Six out of 36 strains 

showed >70% suppression of test pathogens in antagonistic 

dual culture assays. The endophyte strain Trichoderma 

harzianum TharDOB-31 showed in vitro mycelia growth 

inhibition against P. aphanidermatum (76.0%) and R. solani 

(76.9%) significantly, whereas the antagonistic potential of 

strains T. harzianum TharDOB-31 is followed by T. 

asperellum TaspDOB-19 > 70% against P. aphanidermatum 

and R. solani. Anisha et al. (2018) [8] reported antagonistic 

property of processed methanolic extract of Rhizopycnis 

vagum ZM6 and endophytic isolates of ginger against the 

strains like Colletotrichum falcatum, Fusarium oxysporum, 

Sclerotium rolfsii, Phytophthora infestans, Corynespora 

cassiicola, Rhizoctonia solani, and Pythium myriotylum by 

the method of agar well diffusion and observed significant 

inhibition of all these pathogenic strains. Endophytic 

microbes have been recently used as a novel source of 

bioactive compounds (Singh et al. 2017a) [116] and being 

broadly used in the nutraceutical or pharmaceutical industries 

(Theantana et al. 2009) [126]. 

Maheshwari et al., (2019) [89] suggested that the endophytes 

from Cicer arietinum and Pisum sativum possessed plant 

growth promoting traits, increased the plant growth 

parameters in pot conditions and explored as bioinoculant in 

field evaluation. Ambele et al., (2020) [7] reported that cocoa 

seedlings are conducive to endophytic fungal growth either 

occurring naturally or from artificial inoculation. These 

findings could possibly lead to an innovative approach to the 

management of herbivory and subterranean termite pests in 

cocoa agroforests. 

 

Conclusion  

The endophytes have engrossed huge consideration for their 

ability to promote plant growth through by acting as 

biocontrol agents. Endophytes must not induce plant disease, 

should be capable to spread inside plant parts, culturable and 

must colonize plant parts naturally obligately with species 

specificness. Though, the rhizospheric environment is 

somewhat dissimilar from that of internal plant tissues. For 

example, the variations in abiotic factors such as light 

emission, soil type, temperature, pH, the availability of 

oxygen as well as the struggle for nutrients, and the 

interaction with other organisms in the rhizosphere, can be 

key factors in the development of different strategies for 

interaction, lifestyle and survival inside the plant. These 

endophytic bacteria by various actions make available 

necessary nutrients which also reduces the application of 

chemical fertilizers. With a further understanding of the 

functioning of bacterial endophytes in the future scientists 

may be able to engineer bacterial endophytes to facilitate their 

potential to improve plant growth and development. There is a 

strong need to search for novel entophyte strains with as many 

desirable characters for enhancing the crop yield. The 

importance of assessing the ecological and evolutionary 

relevance of these processes should be stressed. The 

enhancement of bacterial colonization spurred by specific 

carbonaceous exudates by plant roots and the capacity of 

certain bacteria to modulate plant metabolism are key issues 

for further study, because these could provide insight into 

possibly mutualistic plant endophyte relationships. Particular 

endophytes could often have important, if not essential, roles 

for plant growth and development. Future discovery of 

pesticides with synergistic effect on endophyte bioinoculant 

may be able to control the range of pathogens. The 
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development of sprayable endophytes for use along with 

chemical pesticides will pave the way for commercial 

pesticide development for effective integrated pest 

management. 
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