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Applications of proximal remote sensing in agriculture: 

A review 
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Vinod Kumar Goyal, Sumit Kakade and MK Shrivastava 

 
Abstract 
Agriculture meets humanity's most fundamental needs: food and fibre. New farming practices introduced 

during the last century (for example, during the Green Revolution) have helped agriculture keep up with 

rising demand for food and other agricultural goods. However, increased food consumption, a growing 

population, and rising income levels are all projected to place extra strain on natural resources. With an 

increasing awareness of agriculture's negative environmental implications, new techniques and 

approaches should be able to fulfil future food demands while preserving or lowering agriculture's 

environmental imprint. Emerging technologies such as geospatial technology, the Internet of Things 

(IoT), Big Data analysis, and artificial intelligence (AI) might be used to make more educated crop 

management decisions. The use of remote sensing technologies for PA has grown substantially over the 

last few decades. The unprecedented availability of high resolution (spatial, spectral, and temporal) 

satellite imagery has encouraged the use of remote sensing in a wide range of PA applications, including 

crop monitoring, irrigation control, fertilizer application, disease and pest management, and yield 

prediction. We present an overview of remote sensing systems, methodologies, and vegetation indices, as 

well as their recent (2015-2020) applications in PA in this study. Remote sensing-based PA technologies, 

such as variable fertilizer rate application technology in Green Seeker and Crop Circle, are already in use 

in commercial agriculture. Unmanned aerial vehicles (UAVs) have grown in popularity over the last 

decade due to their low cost and flexibility in acquiring high-resolution (cm-scale) photographs. At the 

same time, academics are investigating cutting-edge data storage and processing methods like cloud 

computing and machine learning due to the accessibility of a significant volume of satellite data. It is 

crucial to investigate and design an easy-to-use but dependable workflow for the real-time use of remote 

sensing in PA given the complexity of image processing and the quantity of technical knowledge and 

skill required. Wider usage of remote sensing technologies in commercial and non-commercial PA 

applications is anticipated to arise from the development of accurate yet simple-to-use, user-friendly 

systems. 

 

Keywords: Big data analysis, disease and pest management, nutrient management, satellite remote 

sensing, UAV, vegetation indices, water management 

 

Introduction 

In the twenty-first century, sustainable agricultural systems depend heavily on precision 

agriculture (PA) (Delgado et al., 2019 and Berry et al., 2003) [17, 9]. Although PA has been 

defined in a variety of ways, the fundamental idea has not changed (Srinivasan et al., 2006) 
[64]. In order to improve crop production while lowering water and nutrient losses and adverse 

environmental effects, PA entails a management strategy that uses a variety of cutting-edge 

information, communication, and data analysis techniques in the decision-making process 

(application of water, fertilizer, pesticide, seed, fuel, labour, etc.). Other terms used 

interchangeably with PA include information-based management, site-specific crop 

management, target farming, variable rate technology, and grid farming (Srinivasan et al., 

2006 and Koch et al., 2004) [64, 34]. In addition to crop production, PA has been employed in 

the management and production of pasture, livestock, viticulture, and horticulture (Gebbers et 

al., 2010 and Hedley et al., 2014) [24, 28]. 

Section 2 describes the types of remote sensing systems covering various sensors and 

platforms used for PA applications. Section 3 provides a brief overview of remote sensing 

applications in agriculture with a focus on PA. Section 4 describes some commonly used 

vegetation indices derived from remote sensing data and their applications in PAs. Section 5 

covers remote sensing in PAs for (i) irrigation water management, (ii) nutrient management, 

(iii) disease management, (iv) weed management, and (v) crop monitoring and yield.  
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It contains five subsections describing recent applications of 

Specifically, Section 5 will focus on research published 

between 2015 and 2020 for review/discussion. The final 

section of the paper describes the progress achieved, needs 

and challenges of remote sensing applications in PA. 

 

Applications 

Irrigation Water Management  

Application time and rate of irrigation play an important role 

in mitigating crop water stress and achieving optimum crop 

growth and yield. A variety of irrigation management 

practices are used by farmers depending on many factors 

including water availability, existing water management 

infrastructure at the farm (e.g storage and conveyance system, 

type of irrigation system), local/regional water laws, 

economic status, size of the farm, knowledge of farmer, and 

others (Uphoff et al., 2018 and Pardossi et al., 2009) [69, 49]. 

Many farmers apply uniform irrigation at regular intervals 

based on their prior knowledge or experience of farming, 

soils, and climate at the location (Boland et al., 2006) [10]. 

Large commercial farmers deploy soil moisture monitoring 

systems (wired or wireless moisture sensors) to irrigate 

(automatically or manually operation mode) based on the 

measured soil moisture data and crop/plant water 

requirements (Thompson et al., 2007 and Holt et al., 2019) [68, 

30]. Local and regional agricultural agencies may provide 

irrigation advisory services based on the observed climate and 

weather conditions in the area (Eching et al., 2002 and Smith 

et al., 2002) [19, 63]. Almost all of these conventional farming 

practices do not consider the variability within a field and use 

a uniform irrigation rate for the entire field. Remote sensing 

data can help discern the variability within the field and apply 

variable rate irrigation with commonly used irrigation systems 

such as a center pivot. Variable rate application can help 

mitigate water stress arising from extreme wet and dry 

conditions to achieve uniformly high yields in all parts in the 

field while reducing water and nutrient losses (Evans et al., 

2013 and McDowell et al., 2017) [21, 43]. Remote sensing 

images, collected multiple times during a growing season, are 

used to determine various indicators of crop water demand 

such as ET, soil moisture, and crop water stress. These 

indicators are used to estimate crop water requirement and 

schedule irrigation precisely. 

 

Water Stress 

Remote sensing products, either optical, thermal, or 

microwave, have been used to develop and test multiple 

indicators and techniques for precise water management 

(Amani et al., 2016) [3] (Table 2). For example, normalized 

differential vegetation index (NDVI) and soil-adjusted 

vegetation index (SAVI) generated from optical images can 

be used to diagnose water stress and soil moisture conditions 

in many crops (Table 2). These indicators can be used in 

combination with weather forecast data for irrigation 

planning, as shown in Table 2. The Crop Water Stress Index 

(CWSI) based on thermal remote sensing is a common 

indicator used for estimating and planning irrigation water 

demand (Khanal et al., 2017) [13]. 

 

𝐶𝑊𝑆𝐼 =
(𝑇𝑐 −  𝑇𝑎)  − (𝑇𝑐 −  𝑇𝑎)𝐿𝐿

𝐵𝑖𝑜(𝑇𝑐 −  𝑇𝑎)𝑈𝐿 − (𝑇𝑐 −  𝑇𝑎)𝐿𝐿 
 

 

where Tc is the canopy temperature extracted from the 

thermal image and Ta is the air temperature. LL and UL 

indicate the upper and lower temperature difference between 

cap and air. Conceptually, the lower limit (LL) corresponds to 

when the canopy is sweating at its potential rate and the upper 

limit (UL) corresponds to when transpiration from the canopy 

stops. Several methods have been used to calculate the UL 

and LL of the canopy-to-air temperature difference, each with 

its own advantages and disadvantages (Khanal et al., 2017) 
[13]. CWSI is widely used for precise irrigation management in 

orchards (Maes et al., 2019 and Egea et al., 2017) [40, 20]. 

(Katsigiannis et al., 2016) [32] developed CWSI maps for kiwi, 

pomegranate, and vineyard irrigation planning and 

management using a multisensory (multispectral and thermal) 

autonomous UAV system. However, some studies suggest 

that more research is needed to establish climate-, soil- and 

crop-specific triggers/thresholds to enable the use of CWSI 

for irrigation planning. has been shown (Quebrajo et al., 

2018) [52].  

 
Table 1: Spatiotemporal resolutions of the satellite sensors used for precision agricultural (PA) applications. Satellites that provide high spatial 

(<30 m) and temporal resolutions (e.g., daily) are more suitable for PA. 
 

Satellite (Years Active) Sensor (Spatial Resolution) Temporal Resolution Application in Agriculture 

Landsat 1 (1972–1978) MS (80 m) 18 days Crop growth (Leslie et al., 2017) [36]. 

AVHRR (1979–present) MS (1.1 km) 1 day Nutrient management (Seelan et al., 2003) [59]. 

Radar SAT (1995–2013) C-band SAR (30 m) 1–6 days Crop growth (McNairn.2002) [45]. 

VIIRS Suomi-NPP (2011–present) 

VIIRS-JPSS-1 (2017–present) 

MS (IR Radiometer, 375 m and 750 

m) 
16 days (repeat) Crop management (Skakun et al., 2018) [62]. 

Sentinel-2 (2015–present) 
MS (10 m–V and NIR, 20 m–Red 

edge and SWIR, 60 m–2 NIR) 
2–5 days 

Yield (Martínez-Casasnovas et al., 2019) [42]; 

N management (Wolters et al., 2019) [72]. 

 

Soil Moisture 

Remote sensing data collected in multiple bands such as light, 

heat and microwave have been used to estimate soil moisture 

worldwide (Zhou et al., 2016, Verstraeten et al., 2008 and 

Zhang et al., 2016) [78, 70, 76]. Optical and thermal remote 

sensing data have been widely used for soil moisture and ET 

estimation in an approach called the 'triangle' or 'trapezoid' or 

land surface temperature vegetation index (LST-VI) method 

(Zhang, K et al., 2016, Carlson. 2007, Zhu et al., 2017 and 

Babaeian et al., 2018) [76, 13, 79, 5]. The Triangle or LST-VI 

method is based on the physical relationship between surface 

temperature (and thus soil moisture and latent heat flux) and 

vegetation cover properties. In this method, estimation of soil 

moisture is based on interpretation of pixel distribution within 

the LST-VI plot space. When there are enough pixels in the 

image to cover the full range of soil moisture and vegetation 

density, and clouds, surface water, and other outliers are 

removed, the LST-VI space resembles a triangle or trapezoid 

(Carlson et al., 2007) [13]. One end of the LST-VI triangle or 

trapezium is sloping towards high temperatures, representing 
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the dry end (low soil moisture) and the opposite end 

representing the wet end (high soil moisture). (Petropoulos et 

al., 2009) [51]. The triangular or trapezoidal shape of LST-VI 

space is formed due to the low sensitivity of LST to soil 

moisture under dense vegetation conditions. This contrasts 

with the high sensitivity of LST to soil moisture under 

exposed soil or sparse vegetation conditions. Theoretically, 

once the upper and lower moisture contents of the wet and dry 

edges are determined, the soil moisture of the remaining 

pixels can be estimated using interpolation techniques. The 

triangulation method uses a simple parameterization approach 

and does not require additional atmospheric or surface data 

for soil moisture estimation (Carlson et al., 2007 and Carlson 

et al., 2019) [13-14]. However, the subjective determination of 

wet and dry limits in the triangulation method can introduce 

significant uncertainties in soil moisture estimation, especially 

for relatively uniform land surface areas (e.g., the LST-VI 

triangle forming variation in soil moisture (Zhu, W et al., 

2017) [79]. Moreover, traditional triangulation methods require 

separate parameterization for each observation, which is a 

time-consuming and computationally intensive process 

(Sadeghi et al., 2017) [56]. Conventional triangulation requires 

both optical and thermal data, but in some cases (such as 

Sentinel-2) these data may not be available. 

 

Nutrient Management  

Applying the right fertilizer at the right time is essential to 

optimize crop growth and yield while minimizing 

environmental damage from nutrient loss to groundwater and 

surface water. Generally, the recommended fertilizer rates are 

applied evenly during planting and subsequent growth stages 

of the crop. However, crop fertilizer needs vary spatially and 

temporally (between and between seasons) due to differences 

in soil, management, topography, weather, and hydrology 

(Hendricks et al., 2019 and Melkonian et al., 2008) [29, 46]. 

Mapping such variability in plant nutritional status/needs for 

PA application can be difficult with commonly used tools 

such as chlorophyll meters. Several vegetation indices 

(NDVI, SAVI, etc.) derived from remote sensing data have 

been shown to be significantly correlated with plant 

chlorophyll content, photosynthetic activity, and plant 

productivity (Table 2). Mapping these indices can therefore 

help us understand spatial variations in plant trophic status 

that are important for PA. Recently, several tractor-mounted 

remote sensors have become available that can measure crop 

nutrient status for real-time application of spatially varying 

fertilizer rates.  

Green Seeker, Yara N-Sensor, and Crop Circle are examples 

of commercially available handheld and tractor-mounted 

remote sensors that use crop reflectance data to determine and 

apply real-time, spatially-varying fertilizer rates is (Ali et al., 

2017) [2]. In tractor mounted systems, the remote sensor is 

usually mounted in front of the sprayer boom. Nitrogen (N) 

application rates in these systems are determined based on 

calculated vegetation indices (such as NDVI) and further 

transmitted to nutrient applicators/dispensers for real-time 

fertilizer application. Various algorithms are used to convert 

the measured vegetation index to the recommended N 

coverage rate. Generally, the N application rate is calculated 

by comparing the vegetation index measured on the target 

field with the reference vegetation level measured on a well-

fertilized (N-rich) plot/strip representative of the target field. 

increase. The result revealed that maximum variation was 

recorded in flag leaf attitude of blade (late) followed by flag 

leaf attitude of blade (early), leaf pubescence of blade surface, 

gelatinization temperature through alkali spreading value, 

panicle curvature of main axis, spikelet density of pubescence 

of lemma, panicle exertion, decorticated grain shape (in 

lateral view) and culm attitude (Rahangdale et al., 2022) [53]. 

Several fertilizer dose calculation algorithms (such as the 

nitrogen fertilizer optimization algorithm) (Raun et al., 2005 

and Bushong et al., 2016) [54, 12] have been developed and 

successfully implemented in these commercial sensors to 

determine the vegetation index based on the seasonal N 

demand of many plants. (Franzen et al., 2016 and Scharf et 

al., 2011) [23, 58]. 

 
Table 2: Some recently used vegetation indices for remote sensing applications in precision agriculture *. 

 

Index Definition/Equation Applications (References) 

Normalized difference 

vegetation index (NDVI) 

RNIR − Rred

RNIR + Rred 
 

Biomass (Schaefer et al., 2016) [57]; breeding, phenotyping (Duan et al., 2017) [18]; yield 

(Hassan et al., 2019) [27]; disease (Yuan et al., 2016) [75]; n-management (Amaral et al., 

2015) [4]; soil moisture (Ihuoma et al., 2019) [31]; water stress (Ballester et al., 2018) [6]. 

Plant senescence 

reflectance index (PSRI) 

R680 − R550

R750 
 Disease; yield; biomass (Zhou, L et al., 2016) [78]. 

Chlorophyll vegetation 

index (CVI) 

RNIR 

RGreen 
∗

 Rred 

RGreen 
 

Crop yield (Meng et al., 2015) [47]; crop growth-chlorophyll content (Shang et al., 2015) 
[60]; yield (Martínez-Casasnovas et al., 2019) [42]. 

Chlorophyll index (CI) 
RNIR 

RRedEdge 
− 1 Chlorophyll and N-content (Taskos et al., 2015) [67]. 

Photochemical 

reflectance index (PRI) 

R531 − R570 

R531 + R570 
 

Disease (Abdulridha et al., 2019) [1]; leaf water stress (PRInorm), canopy temperature 

and yield (PRI550) (Ihuoma et al., 2019) [31]; water stress (PRI, PRI550–515, PRInorm 

(Ballester et al., 2018) [6]. 

Normalized water index 

(NWI) 

R970 − R900 

R970 + R900 
 Soil moisture and crop yield (Ihuoma et al., 2019) [31]. 

*This list is an effort to compile some recently used vegetation indices, it is not meant to be a comprehensive list as there are many more indices 

that have been used in PA applications. 

 

Crop Monitoring and Yield 

Monitoring crop growth and yield is necessary to understand 

crop responses to the environment and agricultural practices 

and to develop effective management plans for field 

operations and/or corrective actions (Peng et al., 2019) [50]. 

LAI and biomass are her two key indicators of plant health 

and development (Zhou et al., 2016) [78]. LAI is also used as 

input for many crops growth and yield prediction models 

(Kross et al., 2015) [35]. In situ methods of LAI estimation 

(physical and optical), like the destructive field methods used 
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for biomass estimation, are time consuming and labor 

intensive. Similarly (Barela et al., 2022a) [7] found that with 

increased radiation dose, the incidence of chromosomal 

damage may increase, resulting in reduced germination 

potential and plant growth and survival. Furthermore, these 

methods do not provide maps of spatial variability in plant 

growth and biomass. Remote sensing data on plant growth 

(e.g., LAI) and biomass can be used to analyze site-specific 

characteristics (e.g., soil, topography), management (e.g., 

water, nutrients and other inputs), various biotic and abiotic 

stressors (e.g., disease, weeds, water and nutrient stress). 

Similarly, remote sensing data can be used to map differences 

in tillage and residue management and their effects on crop 

growth. Several studies have used hyper spectral imagery and 

various machine learning and classification techniques to map 

farmland tillage and crop residues. Such information on 

growing conditions and tillage methods can help develop site-

specific management plans, including application of different 

water, nutrients and pesticides, to increase production and 

management efficiency. 

First, biophysical parameters (such as LAI) derived from 

remote sensing data are used in plant models to estimate plant 

yield and biomass. Second, statistical (e.g., regression) or 

empirical relationships between remotely detected crop 

parameters/indicators (NDVI, LAI, etc.) and observed crop 

yield and biomass in representative fields are developed. 

increase. Developed regression models or empirical 

relationships can then be used to map yields of target crops. 

Crop modeling is a data-intensive approach that requires a 

large amount of information such as model input parameters, 

weather data, observed yield and biomass data. 

 

 
 

Fig 1: Typical reflectance spectrum of (A) a healthy and a stressed plant (taken from Govaerts and Verhulst (Govaerts et al., 2010) [25]) and (B) 

soil, water, and vegetation (taken from Mondal (Mondal et al., 2009) [48]. 
 

Vegetation index Solar radiation reflected by plants depends 

on the chemical and morphological characteristics of the 

plant. Plant type, water content, and canopy characteristics 

affect reflected light differently in each spectral band. 

Reflected light measured in the ultraviolet, visible (blue, 

green, red), near-infrared and mid-infrared regions of the 

spectrum provides useful information about plant structure 

and condition for developing different vegetation indices. It 

has been commonly used (Xue et al., 2017) [74] (Table 2). A 

vegetation index is a mathematical formula that combines 

measured reflectance in many spectral bands to produce a 

value that helps assess plant growth, vigor, and various other 

vegetation characteristics such as biomass and chlorophyll 

content. (McKinnon et al., 2017) [44]. Morphological 

characters were also revealed that Climate change, like every 

other crop, has a significant impact on soybean production. 

They found a lot of variation in the soybean genotypes for 

DUS characters (Barela et al., 2022b) [8]. Mapping these 

indices helps to understand spatio-temporal variations in 

harvesting conditions that are important for PA applications. 

Widely used vegetation indices (Table 2) such as Normalized 

Differential Vegetation Index (NDVI), Green NDVI 

(GNDVI), and Ground-adjusted Vegetation Index (SAVI) 

take advantage of the fact that vegetation has low reflectance 

in the visible range. doing. It is the peak of the spectrum in 

the blue and red regions and peaks in the green region (Figure 

2). Plant pigments, mainly chlorophyll and carotenoids, 

strongly adsorb in the visible part of the spectrum, excluding 

the green part. However, such strong adsorption does not 

occur in the near-infrared region of the spectrum, causing 

high reflectance in the near-infrared region of green, healthy 

plants (Figure 2). NDVI uses reflectance values measured in 

the red and NIR regions to provide valuable information on 

plant growth (LAI, biomass), vitality, and photosynthesis 

(Table 2). NDVI values range from -1 to 1, with positive 

values indicating increased greenness (LAI and vitality) and 

negative values indicating non-vegetated surfaces such as 

urban areas, bare/land, water, and ice. increase. External 

factors of vegetation conditions such as the sun and visibility 

geometry, surface soil and crop residues, and atmospheric 

effects can cause interference in spectral signals (Rondeaux et 

al., 1996) [55].  

NDVI is sensitive to confounding effects caused by soil, 

atmosphere, clouds and canopy shadows, which can lead to 

misinformation about crops and crop conditions (Carlson et 

al., 1997 and Chen et al., 2019) [15, 16]. Furthermore, NDVI is 

also known to be insensitive to changes in LAI and biomass 

after reaching a threshold (saturation), especially under dense 

plant conditions (Hashimoto et al., 2019 and Tan. 2020) [26, 

66]. A number of alternative indices have been developed to 

address these shortcomings of NDVI, the Atmospheric 

Tolerance Vegetation Index (ARVI), and the Wide Dynamic 

Range Vegetation Index (WDRVI). Red-edge-based 

vegetation indices, such as Red-Edge NDVI (RNDVI), 
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Normalized Difference Red-edge (NDRE), and Red-Edge 

Difference Vegetation Index (REDVI), exist in plant 

vegetative status, LAI, and late growth in maize. biomass in 

dense vegetation conditions (LI, F et al., 2014, Shaver et al., 

2017, Xie et al., 2018 and Lu, J et al.,2015) [37, 61, 73, 39]. 

Remote Sens. 2020, 12, x FOR peer review 9/32 These 

constraints are the Soil Adaptive Vegetation Index (SAVI), 

Atmospheric Tolerance Vegetation Index (ARVI), and Wide 

Dynamic Range Vegetation Index (WDRVI). Red-edge-based 

vegetation indices, such as Red-Edge NDVI (RNDVI), 

Normalized Difference Red-edge (NDRE), and Red-Edge 

Difference Vegetation Index (REDVI), exist in plant 

vegetative status, LAI, and late growth in maize. biomass in 

dense vegetation conditions (LI, F et al., 2014, Shaver et al., 

2017, Xie et al., 2018 and Lu, J et al., 2015) [37, 61, 73, 39]. 

 

𝐶𝑊𝑆𝐼 =
(𝑇𝑐 −  𝑇𝑎)  − (𝑇𝑐 −  𝑇𝑎)𝐿𝐿

𝐵𝑖𝑜(𝑇𝑐 −  𝑇𝑎)𝑈𝐿 − (𝑇𝑐 −  𝑇𝑎)𝐿𝐿 
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