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Abstract 
Tuberculosis, or TB, is a serious global health problem that is the leading cause of death from a single 
infectious disease. There are various approaches used by the research workers for modelling TB 
prevalence and Bayesian technique is one of them. For this study, the number of notified cases of 
tuberculosis in India from 1999 to 2019 were analyzed, using data from annual reports published by the 
Ministry of Health and Family Welfare. To model the number of TB cases in India, the current study 
used a counting process, represented by the random variable {N(t), t ∈ [0, ∞)}, which counts the number 
of TB cases each year. The study utilized a Non-Homogeneous Poisson Process (NHPP), which allows 
for the average rate of TB cases to vary with time, in their analysis. The parameters of the posterior 
distribution were assumed to follow a uniform distribution, with certain hyperparameter values assigned 
to specific intervals of time. The Markov Chain Monte Carlo (MCMC) method was used to analyze the 
data. The proposed model was found to fit the data well, as demonstrated by the results of the chi-square 
test for goodness of fit. 
 
Keywords: Tuberculosis, MCMC, NHPP, counting process 

 
Introduction 
India is a developing country and it faces several developmental challenges. One of the major 
challenges is the diseases which severely affects the quality of human resource and a 
significant amount of expenditure is done on curing the diseases. Tuberculosis disease is a 
major problem in developing and under-developed countries and case of India is not different. 
India accounts for 26% of global TB cases and 24% of the gap between projected TB 
incidence and the number of patients newly diagnosed in 2020 (WHO, 2021) [11]. TB is also a 
leading cause of death among HIV patients and is the 9th leading cause of death worldwide 
(WHO, 2021) [11].  
Bayesian inference involves using data, which is assumed to be fixed, and treating unknown 
parameters as random variables. The goal is to determine the probability of a given parameter 
(θ) given a set of observed data (x). The Bayesian approach utilizes prior information about θ, 
in addition to the likelihood, to calculate the posterior distribution of the unknown parameter. 
This prior information can be either informative, based on external information about the 
distribution of the parameter(s) of interest, or non-informative, in the absence of such 
information. In the context of tuberculosis modeling, non-informative priors, such as Jeffreys 
prior, Improper Prior and uniform prior are often used, while informative priors are less 
common. Severity of the TB is measured by several measures and prevalence is one among 
them. The prevalence of TB can be estimated using Bayesian techniques with the help of 
Markov chain Monte Carlo (MCMC) simulation. This model can also be used to predict TB 
prevalence.  
Bayesian technique is applied by several research workers for modelling of tuberculosis 
prevalence. Wallinga et al. (2006) [10] conducted a study in which they used Bayesian 
techniques to analyze TB prevalence in Africa, taking into account both spatial and temporal 
patterns in the data. They discovered that TB prevalence was higher in urban areas and in 
countries with a high HIV prevalence. Achcar et al. (2008) [1] used Bayesian techniques to 
analyze the prevalence of tuberculosis cases in New York City from 1970 to 2000. The study 
used a counting process with two change points during the period and modeled the data using 
non-homogeneous Poisson processes in the presence of the two change points. Gelman et al. 
(2010) [4] used Bayesian techniques to model TB prevalence in Russia, taking into account 
both spatial and temporal patterns in the data. The authors found that TB prevalence was 
higher in certain regions of Russia and that it was increasing over time.  
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Methodology 

Data description 

For this study, the number of notified cases of tuberculosis in 

India from 1999 to 2019 were analyzed, using data from 

annual reports published by the Ministry of Health and 

Family Welfare. The data reveals three trends over a period of 

21 years: an increase in cases from 1999 to 2011, likely due to 

the ineffectiveness of TB control programs and the HIV 

epidemic; a decrease in cases from 2012 to 2015, attributed to 

the success of programs such as the Revised National 

Tuberculosis Control Programme (RNTCP); and another 

increase in cases from 2016 to 2019, leading to the 

implementation of the National Strategic Plan (2017-2025) 

and the TB-free campaign at the Delhi End TB Summit in 

2018. There are two significant change points in the data, in 

2012 and 2016, with the highest number of TB cases recorded 

in 2019. The number of notified and cumulative cases per 

year can be found in Table 1. 

To model the number of TB cases in India, the current study 

used a counting process, represented by the random variable 

{N(t), t ∈ [0, ∞)}, which counts the number of TB cases each 

year. A stratified sample of size 277050, representing 10% of 

the total number of TB cases, was used. In present study 

uniform distribution was used to assign the time in number of 

days for the occurrence of each case between 1999 and 2019, 

totaling T=7670 days.  

 
Table 1: Year-wise number of notified and cumulative TB cases 

 

Sr. No. Year Year-1999 Notified cases Cumulative cases 

1. 1999 0 133918 133918 

2. 2000 1 240835 374753 

3. 2001 2 468360 843113 

4. 2002 3 619259 1462372 

5. 2003 4 906638 2369010 

6. 2004 5 1188545 3557555 

7. 2005 6 1294550 4852105 

8. 2006 7 1400340 6252445 

9. 2007 8 1474605 7727050 

10. 2008 9 1517363 9244413 

11. 2009 10 1533309 10777722 

12. 2010 11 1522147 12299869 

13. 2011 12 1515872 13815741 

14. 2012 13 1467585 15283326 

15. 2013 14 1410880 16694206 

16. 2014 15 1443942 18138148 

17. 2015 16 1423181 19561329 

18. 2016 17 1754957 21316286 

19. 2017 18 1827959 23144245 

20. 2018 19 2155894 25300139 

21. 2019 20 2404815 27704954 

 
 

Fig 1: Number of Notified TB cases over the years 

 

The number of notified and cumulative TB cases per year can 

be found in Table 1, and a graph of the progression of notified 

cases over the years can be found in Figure 1. The study 

utilized a Non-Homogeneous Poisson Process (NHPP), which 

allows for the average rate of TB cases to vary with time, in 

their analysis.  

A Bayesian approach using Markov Chain Monte Carlo 

methods (Gelfand & Smith, 1990) [3] was employed to 

account for the presence of two change points in the data. 

This method has been utilized by other researchers to analyze 

homogeneous and non-homogeneous Poisson processes in the 

presence of change points (Raftery & Akman, 1986; Ruggeri 

& Sivaganesan, 2005) [7, 8]. 

 

The likelihood function  

In this study, a power-law process with two change points 

was used to model the cumulative number of TB cases 

observed over time, represented by the function N(t). This 

process, known as a non-homogeneous Poisson process, 

assumes that the intensity function 𝜆(𝑡) = 𝑑𝑚(𝑡) 𝑑𝑡⁄ =
𝑑𝐸[𝑁(𝑡)] 𝑑𝑡,⁄  where 𝑚(𝑡) is the mean value function (Cox & 

Lewis (1966)) and λ(t) follows a power law and can vary over 

time. The mean value function m(t) is used to describe this 

variability. The power-law process has been chosen for its 

ability to capture changes in the rate of TB case occurrence, 

which is important for understanding and predicting the 

spread of the disease. The intensity function for the overall 

process can be given as  

 

𝜆 (
𝑡

𝜃
) =

{
 
 

 
 𝜆1 =

𝛽1

∝1
(
𝑡

∝1
)𝛽1−1 if 0 < 𝑡 < 𝜁1

𝜆2 =
𝛽2

∝2
(
𝑡

∝2
)𝛽2−1if𝜁1 ≤ 𝑡 < 𝜁2

𝜆3 =
𝛽3

∝3
(
𝑡

∝3
)𝛽3−1if 𝑡 ≥ 𝜁2

   (1)

    

Where 𝜃 = (𝛼1, 𝛼2, 𝛼3, 𝛽1, 𝛽2, 𝛽3, 𝜁1, 𝜁2) 
By letting 𝑚𝑗(𝑡) = 𝑚(𝑡 𝜃𝑗)⁄  the mean value function 

corresponding to the intensity function can be given as 

 

 𝑚 (
𝑡

𝜃
) = {

𝑚1(t) if 0 < 𝑡 < 𝜁1
𝑚2(t) − 𝑚2(ζ1) + 𝑚1(ζ1) if𝜁1 ≤ 𝑡 < 𝜁2

𝑚3(t) − 𝑚3(ζ2) + 𝑚2(ζ2) − 𝑚2(ζ1) + 𝑚1(ζ1) if𝜁2 ≤ 𝑡 < 𝑇
      (2) 

 

Where 𝑚1(t) = (
𝑡

∝1
)𝛽1, 𝑚2(t) = (

𝑡

∝2
)𝛽2 and 𝑚3(t) = (

𝑡

∝3
)𝛽3 

The intensity function 𝜆𝑗(𝑡) given in equation (1) can take on 

different forms. In the present study, a power-law process 

with two change points is used. This process is constant for 

𝛽𝑗 = 1, decreases for 𝛽𝑗 < 1, and increases for 𝛽𝑗 > 1, where 

𝑗 = 1,2,3. This type of relation between parametric forms is 

known as Weibull distributions (Kuo & Yang, 1996) [6]. 
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In this study, data was collected on the number of notified 

cases of tuberculosis in India over a 21-year period, up until a 

total time T. The series of occurrences of cases was 

represented by ti, with i ranging from 1 to n and the times 

falling in the sequence of 0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑁(𝜁1) <

𝑡𝑁(𝜁1)+1 < ⋯ < 𝑡𝑁(𝜁2) < 𝑡𝑁(𝜁2)+1 < ⋯ < 𝑡𝑛 < 𝑇, 𝑡he 

likelihood function for the parameter vector θ, given the 

presence of two change-points 𝜁1 and 𝜁2, was represented by 

the equation (3). 

 

𝐿(𝜃) = ∏ 𝜆1(𝑡𝑖)𝑒
−𝑚1(𝜁1) ×∏ 𝜆2(𝑡𝑖)𝑒

−𝑚2(𝜁2)+𝑚2(𝜁1)𝑁(𝜁2)
𝑖=𝑁(𝜁1)+1

𝑁(𝜁1)
𝑖=1 ×∏ 𝜆3(𝑡𝑖)𝑒

−𝑚3(𝑇)+𝑚3(𝜁2)𝑁(𝑇)
𝑖=𝑁(𝜁2)+1

    (3) 

 

The occurrence of tuberculosis can be modeled using a 

Poisson distribution, as it is a rare phenomenon. This is 

supported by the likelihood function shown in equation (3). 

Additionally, the sampling distribution for the intervals 

between occurrences, denoted by 𝑈𝑖, follows a density with a 

function of 𝑓𝑈 𝜃⁄ (𝑡) = 𝜆(𝑡 𝜃⁄ ) exp[−𝑚(𝑡 𝜃⁄ )] , 𝑓𝑈2 𝑈1=𝑠⁄ (𝑡) =

𝜆(𝑠 + 𝑡 𝜃⁄ ) exp[−𝑚(𝑠 + 𝑡 𝜃⁄ ) + 𝑚(𝑠 𝜃⁄ )] and so on. The 

data for this occurrence, denoted by 𝐷𝑇 =
{𝑛; 𝑡1, … , 𝑡𝑁(𝜁1), 𝑡𝑁(𝜁1)+1, … , 𝑡𝑁(𝜁2), 𝑡𝑁(𝜁2)+1, … , 𝑡𝑛, 𝑇} includes 

the number of occurrences, n, the times of occurrence, 

𝑡1, . . , 𝑡_𝑛, and the presence of two change points, 𝜁1 and 𝜁2.  

 

Bayesian Analysis  

In this analysis, the intensity function is described by equation 

(1) and is assumed to have two change points, which are 

normally distributed with known hyperparameters 𝑐𝑙 and 𝑑𝑙 
(where 𝑙 = 1, 2 and 𝜁1 < 𝜁2). The parameters 𝛼𝑗  and 𝛽𝑗 are 

uniformly distributed with known hyperparameters 

𝑎𝑗 , 𝑏1𝑗 , and 𝑏2𝑗 (𝑓𝑜𝑟 𝑗 = 1,2,3). The values of 𝑏11 and 𝑏13 are 

assumed to be one in the intervals 0 < 𝑡 < 𝜁1 and 𝜁1 ≤ 𝑡 <
𝜁2, while in the interval 𝜁2 ≤ 𝑡 < 𝑇, the values of 𝑏21 and 𝑏23 

are assumed to be 10. To get a decreasing function, the value 

of 𝑏12 is assumed to be zero and the value of 𝑏22 is assumed 

to be one. The parameter 𝑎𝑗 is assumed to have a large value, 

and the prior independence among the parameters is also 

considered. The joint posterior distribution is given. 

 

∏(
𝜃

𝐷𝑇
) ∝ (

𝛽1

𝛼1
)𝑁(𝜁1)(

𝛽2

𝛼2
)𝑁(𝜁2)−𝑁(𝜁1)(

𝛽3

𝛼3
)𝑁(𝑇)−𝑁(𝜁2) × [∏ (

𝑡𝑖

𝛼1
)𝛽1−1]

𝑁(𝜁1)
𝑖=1 [∏ (

𝑡𝑖

𝛼2
)𝛽2−1]

𝑁(𝜁2)
𝑖=𝑁(𝜁1)+1

[∏ ((
𝑡𝑖

𝛼3
)𝛽3−1]

𝑁(𝑇)
𝑖=𝑁(𝜁2)+1

× exp {−(
𝜁1

𝛼1
)
𝛽1−1

− [(
𝜁2

𝛼2
)
𝛽2
− (

𝜁1

𝛼2
)
𝛽2
] − [(

𝑇

𝛼3
)𝛽3 − (

𝜁2

𝛼3
)
𝛽3
]} (4) 

 

Where 𝐷𝑇 = {𝑛; 𝑡1, … , 𝑡𝑛; 𝑇}, 0 < 𝛼𝑗 < 𝑎𝑗 , 0 < 𝛽𝑗 < 𝑏𝑗 , 𝑐𝑙 <

𝜁1 < 𝑑𝑙 , 𝑗 = 1,2,3 and 𝑙 = 1,2. 
Because the posterior distribution is complex, Markov Chain 

Monte Carlo (MCMC) methods were used to estimate its 

parameters. Specifically, the Gibbs sampling algorithm of the 

MCMC method was used. To use the Gibbs sampling 

algorithm, we need the full conditional posterior distributions, 

which are given. 

 

∏(𝜃𝑗 𝜃(𝑗), 𝐷𝑇), 𝑗 = 1,2, … , 𝐾 and 𝜃(𝑗) = (𝜃1, … ,⁄ 𝜃𝑗−1, 𝜃𝑗+1, … , 𝜃𝐾) 

 

To perform this analysis, the WinBugs software was used. 

With this software, we can obtain the desired results by 

simply specifying the likelihood and prior distributions for the 

parameters. 

 

Results and Discussion 

In this study, the number of notified cases of tuberculosis in 

India between 1999 and 2019 was analyzed using data from 

the yearly report of TB in India released by the Central TB 

Division of the Ministry of Health and Family Welfare under 

the Revised National Tuberculosis Control Programme. This 

report contains information on various parameters related to 

tuberculosis, including the number of notified cases. 

The parameters of the posterior distribution were assumed to 

follow a uniform distribution, with certain hyperparameter 

values assigned to specific intervals of time. The increasing 

function in the data was defined by the equation (1) and the 

hyperparameters 𝑎𝑗 = 100 and 𝑏11 = 𝑏13 = 1, 𝑏21 = 𝑏23 =

10 were assigned to the intervals 0 < 𝑡 < 𝜁1 and 𝜁1 ≤ 𝑡 < 𝜁2, 

respectively. The decreasing function in the data was defined 

by the equation (1) and the hyperparameters 𝑏12 =
0 and 𝑏22 = 1 were assigned to the interval 𝜁2 ≤ 𝑡 < 𝑇. 

Additionally, prior distributions were assumed for the change 

points (𝜁1 and 𝜁2) with hyperparameters 𝑐1 = 3648, 𝑑1 =
5102, 𝑐2 = 5844, and 𝑑2 = 6572, corresponding to the 

estimated time periods of 2008-2013 and 2014-2018, 

respectively. It was assumed that the intervals of the prior 

distributions of the change points did not overlap. 

The MCMC method was used to analyze the data. To ensure 

the reliability of the results, a burn-in sample was discarded 

initially. This allows the Markov chain time to reach the 

equilibrium distribution and avoids the possibility of over-

sampling regions that have low probability under the 

equilibrium distribution due to the "bad" starting point of the 

chain. The Gibbs sampler was used to generate dependent 

samples, and to obtain independent samples, samples were 

taken at a constant interval using the Winbugs software. A 

burn-in sample of size 30000 was considered, and the Gibbs 

samples of size 100000 were simulated by selecting every 

50th sample for each of the parameters to obtain 

approximately uncorrelated samples. To obtain the final 

sample of independent samples, every 50th sample was taken, 

resulting in a final sample of size 1400 for posterior 

estimation. The convergence of the Gibbs sampling algorithm 

was verified by analyzing plots of the simulated samples for 

each parameter to ensure that a stationary distribution was 

obtained in the final sample of 1400 simulated Gibbs samples. 

In this study, estimates of the posterior median of various 

parameters (𝛼1, 𝛼2, 𝛼3, 𝛽1, 𝛽2, 𝛽3, 𝜁1, 𝑎𝑛𝑑 𝜁2) were calculated 

and presented in a table 2. The mean value function was then 

obtained using these estimates and a line chart was created to 

display the pattern of observed and estimated TB cases over 

the years (figure 2). The observed and estimated TB cases are 

also presented in a table (table 3). 
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Table 2: Estimates of parameters of posterior distribution 

 

Sr. No. Parameter Median Standard deviation 

1. 𝛼1 0.866 0.154 

2. 𝛼2 159.230 17.820 

3. 𝛼3 0.219 0.524 

4. 𝛽1 0.892 0.025 

5. 𝛽2 2.180 0.062 

6. 𝛽3 0.785 0.111 

7. 𝜁1 4748.000 92.300 

8. 𝜁2 6939.00 5.289 

 

𝑚(
𝑡

𝜃
) =

{
 
 

 
 (

𝑡

0.8656
)
0.8916

 if 0 < 𝑡 < 4748

(
𝑡

159.23
)
2.18

− (
4748

159.23
)
2.18

+ (
4748

0.8656
)
0.8916

 if 4748 ≤ 𝑡 < 6939

(
𝑡

0.2189
)
0.7851

− (
6939

0.2189
)
0.7851

+ (
6939

159.23
)
2.18

− (
4748

159.23
)
2.18

+ (
4748

0.8656
)
2.18

 if 6939 ≤ 𝑡 < 7670

   (5) 

 

 
 

Fig 2: A chart showing number of observed and Expected number of TB cases over the years 

 
Table 3: Number of observed and Expected TB cases over the years 

 

Sr. 

No. 
Year Time Observed 

Cumulative 

(Obs.) 
Expected 

Cumulative 

(Exp.) 

1 1999 365 133918 133918 135418 135418 

2 2000 731 240835 374753 215366 350784 

3 2001 1096 468360 843113 452714 803498 

4 2002 1461 619259 1462372 626628 1430126 

5 2003 1826 906638 2369010 933093 2363219 

6 2004 2192 1188545 3557555 1127764 3490983 

7 2005 2557 1294550 4852105 1215709 4706692 

8 2006 2922 1400340 6252445 1724905 6431597 

9 2007 3287 1474605 7727050 1483631 7915228 

10 2008 3653 1517363 9244413 1208271 9123499 

11 2009 4018 1533309 10777722 1459652 10583151 

12 2010 4383 1522147 12299869 1480774 12063925 

13 2011 4748 1515872 13815741 1614588 13678513 

14 2012 5114 1467585 15283326 1640347 15318860 

15 2013 5479 1410880 16694206 1722677 17041537 

16 2014 5844 1443942 18138148 1675067 18716604 

17 2015 6209 1423181 19561329 1465434 20182038 

18 2016 6575 1754957 21316286 1956254 22138292 

19 2017 6940 1827959 23144245 2048861 24187153 

20 2018 7305 2155894 25300139 2327857 26515010 

21 2019 7670 2404815 27704954 1982606 28497616 

 

The data on notified cases of tuberculosis in India shows an 

increase in TB prevalence in the 2000s, possibly due to lack 

of awareness about the transmission and other factors 

contributing to the disease. After 2010, there appears to be 

two change points, possibly due to increased efforts by the 

government to control the spread of TB. However, the 

number of cases has continued to increase in recent years, 

with the highest number of cases reported in 2019. Data for 

the number of notified cases in 2020 and 2021 was not 

included in the analysis due to underreporting of TB cases due 

to the COVID-19 pandemic, as people may have hidden their 

other medical conditions, including TB, during this time. In 

addition, there is a positive correlation between the 

occurrence of TB and COVID-19 (Visca et al., 2021) [9], 

which could further impact the number of notified cases. 

(India TB Report, 2021). 

The proposed model was found to fit the data well, as 

demonstrated by the results of the chi-square test for goodness 

of fit. This study can be extended to other epidemiological 

data sets with more than two change points, and the use of 

MCMC methods makes it easier to estimate the parameters in 

the case of a non-homogeneous Poisson process with change 

points, a task that traditional inference techniques are not 

capable of. In this study, the intensity function was in the 

form of a power law process, but other parametric forms such 

as Gompertz growth or logistic growth could also be used. 
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