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Abstract 
Edwardsiella tarda is a well-recognised bacterial pathogen that inhabits the aquatic environment. E. 

tarda can infect many different fish species cultured worldwide and cause danger to aquaculture 

production. Various types of vaccines have been developed against E. tarda infection in fish species. 

Published findings on disease outbreaks, pathogenesis and virulence factors of E. tarda and vaccine trials 

against edwardsiellosis in various fish species are collated in the present study. 
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1. Introduction 

Edwardsiella tarda is a Gram-negative, rod-shaped, facultatively anaerobic, non-spore-

forming bacteria, peritrichously flagellated, motile bacterium of the family 

‘Enterobacteriaceae’. E. tarda was first reported in Japan by Sakazaki and Murata [89]. In 

fishes, E. tarda was first reported as Paracolobactrum anguiillimortiferum associated with red 

disease of Japanese eel, Anguilla japonica [30]. Ewing, McWhorter, Escobar, and Lubin 

examined 37 isolates submitted to the Communicable Disease Center, Atlanta, Georgia, by 

various laboratories [21]. In 1965, they suggested the term 'Edwardsiella' as the generic name 

and 'tarda' as the specific name for this organism which they incorporated within the family 

Enterobacteriaceae [90]. The genus Edwardsiella was named after the American Bacteriologist 

P R Edwards (1901–1966), proposed in 1965 [21]. Wakabayashi confirmed that P. 

anguiillimortiferum was the same as E. tarda [113]. Since 1965, E. tarda has been isolated from 

different fish and non-fish species such as reptiles, birds, and mammals, including humans.  

 

2. Disease outbreaks in various fish species 

Edwardsiellosis, caused by the bacterium E. tarda, is a severe systemic bacterial disease, 

which affects a variety of fish taxa and has a worldwide distribution in fresh and marine waters 
[4]. E. tarda causes fish gangrene, emphysematous putrefactive disease of catfish or red disease 

of eels, and edwardsiella septicemia [83]. Clinical signs of E. tarda vary after onset. The 

infected fish usually show loss of pigmentation, swelling of the abdominal surface, watery and 

bloody ascites in the abdominal space, swollen internal organs, haemorrhage, congested liver, 

spleen, and kidney [73, 74]. Edwardsiella septicemia is a serious systemic bacterial infection of 

cultured channel catfish (Ictalurus punctatus), which causes gas-filled, malodorous lesions in 

the muscle tissue of channel catfish, and the bacteria was isolated from the lesions or kidneys 

of diseased catfish in the United States [73]. E. tarda was isolated from largemouth bass 

(Micropterus salmoides) and various other aquatic animal species in Florida, including six 

species of wild birds and five alligators (Alligator mississippiensis) [119], and it was found to be 

associated with haemorrhagic enteritis in some of the species. In Japan and Taiwan, it causes a 

severe infection, called red disease, of cultured Japanese eels (A. japonica) [19], and the disease 

was characterized by macroscopic putrefactive lesions in the kidney or liver frequently 

combined with high mortalities, mainly in the summer months. Outbreaks in Japanese flounder 

(Paralichthys olivaceus) and Tilapia nilotica result in abdominal inflation and accumulation of 

ascites [78, 46], and in sea bream (Evynnis japonica), the infection was characterized by 

haemorrhagic ulcers on head and body surface, and numerous bacterial colonies as greyish-

white spots in spleen and kidney [49]. The first description of an epizootic of edwardsiellosis 

affecting wild adult striped bass population was observed in the Chesapeake Bay [6].  

E. tarda was isolated and identified from freshwater catfish and their environment [120] and 
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from several species of cultured marine fish such as red 

seabream and yellow tail [131]. Edwardsiellosis was reported 

among cultured coloured carps, Cyprinus carpio, in Mihara 

city, Hiroshima Prefecture [87]. The bacterium can affect a 

variety of other fishes, including flounders and tropical fishes. 

These outbreaks are typically associated with warm summer 

months, elevated water temperatures, poor water quality, and 

increased dissolved organic material [6, 73]. Repeated outbreaks 

of edwardsiellosis in turbot culture have occurred in different 

geographical areas of Europe [9]. E. tarda was isolated from 

moribund Scophthalmus maximus in an outbreak of 

edwardsiellosis in a mariculture farm in Yantai, a northern 

coastal city of China [124]. The first outbreak of 

edwardsiellosis in a wild European eel population was 

reported in a mediterranean freshwater coastal lagoon, 

Albufera Lake, Valencia, Spain [2]. African sharptooth catfish 

(Clarias gariepinus) and Nile tilapia (Oreochromis niloticus) 

are two main reared species in polyculture systems in Egypt 

that were highly affected by recurrent E. tarda outbreaks [32]. 

The disease occurrence in A. marmorata caused by E. tarda 

was observed in a freshwater farm in south China [75]. The 

incidence of edwardsiellosis in cultured sharpsnout seabream 

(Diplodus puntazzo) was reported in the Mediterranean Sea 
[42]. Multiple edwardsiellosis outbreak and concomitant 

mortality associated with E. tarda and E. piscicida were 

reported in farmed barramundi (Lates calcarifer) in US [66].  

 Although E. tarda is generally considered as a problem in 

warm water fishes, the bacterium was responsible for 

mortalities of economically important coldwater fishes, such 

as chinook salmon (Oncorhynchus tshawytscha) in the USA 
[3], in turbot (S. maximus) in Spain [79], in farmed rainbow 

trout (O. mykiss) [86], and in brook trout (Salvelinus fontinalis) 
[110]. The infections are associated with stress-related 

immunosuppression due to an increase in summer water 

temperatures and poor environmental conditions. In India, E. 

tarda-specific infection has been reported in many cultured 

fish species by several authors [41, 47, 88, 102].  

 

3. Pathogenesis and virulence factors 

E. tarda is an intracellular pathogen and is capable of 

infecting various types of cells [35, 60]. Pathogenesis of E. tarda 

is multifactorial, and many potential virulent factors have 

been suggested, including antiphagocytic killing [1], 

production of siderophore [44], hemolysins [118], the ability to 

invade epithelial cells and fish tissues [34, 59, 60], and production 

of toxins such as dermatotoxins and hemolysins [29, 111, 118]. 

Two types of hemolysins such as cell-associated and iron-

regulated hemolysin [33,118], and extracellular hole-forming 

hemolysin [11] were reported. The gastrointestinal tract, the 

body surface, and gills were observed to be the sites of entry 

of virulent E. tarda [59]. Virulent strains of E. tarda could 

enter fish in large numbers via mucus, gills, and the 

gastrointestinal tract and multiply inside various internal 

organs, causing death [85]. Type ІІІ secretion system (T3SS) 

and type VІ secretion system (T4SS) of E. tarda play 

significant roles in adherence, penetration, survival, and 

replication in epithelial cells and phagocytes of the host [81]. 

Using a genome-wide analysis of functional genomics such as 

transposon tagging [71, 95] and proteomics [94, 105], nearly 20 

crucial virulence genes were identified to be involved in 

pathogenesis by E. tarda. The two most important virulence 

factors in E. tarda based on LD50 studies are the T3SS and 

partial EVP (E. tarda virulence protein) gene clusters [94, 106]. 

The T3SS proteins include the E. tarda secretion system 

apparatus (EsaB and EsaN), effectors (EseB, EseC, and 

EseD), chaperones (EscA, EscB, and EscC), and regulators 

(EsrA, EsrB, and EsrC) [106, 114, 135]. 

 

3.1 Bacterial surface components as virulence factors 

Flagellar filament structural protein, fliC, is essential for the 

growth and virulence of E. tarda [28]. Flagellar genes such as 

fliC12, fliA, and flhDC of E. tarda play crucial roles in 

filament structure of flagella, bacteria motility, biofilm 

formation, adherence, internalization, and pathogenicity [126]. 

Invasin Inv of E. tarda plays essential roles in the hemolytic 

activity, biofilm formation, adherence, internalization, and 

pathogenicity of the bacteria [15]. Invasin Inv1 is a surface-

localized virulence factor that is involved in host infection [55]. 

Mutation of tryptophanase gene tnaA in E. tarda reduces 

antibiotic resistance, lipopolysaccharide (LPS) production, 

and virulence indicating that TnaA is involved in enhancing 

the pathogenicity of E. tarda [27]. The genes of E. tarda two-

component system qseB and qseC were found to control 

flagellar motility, fimbrial hemagglutination, and intracellular 

virulence [117]. Membrane-bound lytic murein transglycosylase 

A (MltA) plays essential roles in b-lactam antibiotics and 

environmental stress resistance, autolysis, LPS biosynthesis, 

and pathogenicity of E. tarda [63]. Bacterial sialidases are a 

group of glycohydrolases that are known to play an essential 

role in the invasion of host cells and tissues. NanA, a 

sialidase, from E. tarda plays a vital role in pathogenesis [40].  

 

3.2 DNA-binding proteins, lysozyme inhibitors and other 

proteins of virulence 

DNA-binding protein from starved cells (Dps) is a member of 

ferritin-like proteins that exhibit properties of non-

specific DNA binding, iron oxidation and storage. The two 

Dps, Dps1 and Dps2 are functional analogs that possess 

ferroxidase activity and DNA binding capacity and are 

required for optimum oxidative stress resistance and 

full bacterial virulence [136]. Alternative sigma factor 54 

(rpoN) is an essential regulator of virulence and stress 

resistance [116]. Cpx (cpxP, cpxR, cpxA), ‘Conjugative 

plasmid expression’ is found to be involved in E. tarda 

virulence [80]. E. tarda possesses the genes of two lysozyme 

inhibitors, ivy, and mliC (ivyEt and mliCEt). IvyEt confers 

protection on E. tarda against lysozyme lysis in the presence 

of serum and is required for optimal infection of the host [115]. 

MliCEt is a lysozyme inhibitor implicated in various aspects 

of bacterial virulence and required for host infection. MliCEt 

as a virulence factor probably works in a parallel, non-

redundant manner with IvyEt [57]. Eta1 (adhesin) is an in vivo-

induced antigen that mediates pathogen-host interaction and, 

as a result, is required for optimal bacterial infection [101]. 

Hsp90 is a molecular chaperone involved in diverse cellular 

processes, including protein folding/repairing and signal 

transduction in eukaryotic cells. HtpG is the prokaryotic 

homolog of Hsp90 which is a biologically active protein 

required by E. tarda for coping with various stress conditions 
[13]. Members of the DnaJ/Hsp 40 family play an important 

role in protein homeostasis by regulating the activity of 

DnaK/Hsp70. E. tarda DnaJ is a virulence-associated 

molecular chaperone with immuno protective potential [14]. 

 

3.3 Pathogenesis by host-immune evasion 

Catalases such as KatB and KatG, and a Two-component 

system (TCS), QseE, QseG, and QseF in E. tarda serve for 

the physiological fitness and pathogenesis of E. tarda [112]. 

https://www.thepharmajournal.com/
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EsrB and PhoP (TCS) are also involved in the pathogenicity 

of E. tarda [67]. The PhoP-PhoQ system of E. tarda detects 

changes in environmental temperature and Mg2⁺ 

concentration as well as regulates the T3SS and T4SS through 

direct activation of esrB [10]. Thirteen proteins in E. 

tarda were found to require the presence of PhoP for full 

expression [68]. E. tarda circumvents serum attack by 

preventing, to a large extent, complement activation via the 

alternative pathway, and those heat-labile surface structures 

likely to play an essential role in the complement evasion [56]. 

E. tarda inhibits apoptosis by regulating the genes involved in 

the apoptotic process. Fech, Prx3, Brms1a, and Ivns1a are 

involved in apoptosis in teleost. Prevention of apoptosis is a 

virulence strategy of E. tarda that enables the pathogen to 

survive and replicate inside the host cells [138]. Sip1 [139] and 

Sip 2 [54], serum-regulated proteins, are essential for serum 

resistance and pathogenicity of E. tarda. E. tarda strain 

having more than one virulence gene (esrB, mukF, and gadB) 

results in more severe lesions than strains having one or even 

no virulence genes [77].  

 

 
 

Fig 1: SS agar plate and BHI plate with E. tarda colonies. 

  

 
 

Fig 2a Fig 2b 
 

Fig 2: Labeo rohita experimentally infected with E. tarda via 

intraperitoneal injection (3.5 × 108 cfu/ml). 2a) scale erosion and fin 

erosion. 2b) redness and cutaneous lesions in the musculature. 

 

4. Vaccines trials against Edwardsiella tarda in various fish 

species 

With increased aquaculture production globally, vaccine 

development has become more important [18]. A variety of 

antigen preparation methods have been used to develop 

effective vaccines against E. tarda infections, including 

formalin-killed cells (FKC), ECP (extracellular protein), LPS, 

avirulent E. tarda, live attenuated E. tarda, ghost cells, OMP 

(outer membrane protein), OMV (outer membrane vesicle), 

recombinant proteins, recombinant protein-expressing cells, 

and DNA vaccines [81]. Variations in the serotypes of E. tarda 

had resulted in a long time to develop vaccine and to report on 

vaccination trials [76]. Immunization of Japanese eel with LPS 

preparation of E. tarda showed good protection [93]. 

Immunization with E. tarda crude LPS and crude 

polysaccharide (PS) was an effective immunogen producing 

high antibody titers and higher protection than whole-cell 

preparation in eel when experimentally challenged with live 

E. tarda [92]. The lipid of E. tarda acts as an immuno 

suppressor in the eel [91]. Citrus limon peel essential oil as an 

organic waste showed enhancement on immune response in 

tilapia and increased disease resistance against E. tarda [5]. 

Glucose enhanced the immunity of tilapia (O. niloticus) 

against E. tarda infection through metabolome 

reprogramming. E. tarda infection would suppress the 

glucose level in the liver of fish, and so exogenous glucose to 

the fish would greatly enhance their survival ability. The 

exogenous glucose was preferably converted into fatty acid, 

which could replace glucose as an important source to help 

fish fight against pathogens [132].  

 

4.1 FKC, ECP, and ICC 

When the fish immunized with FKC, ECP, or ICC 

(intracellular components) and control fish were challenged 

by injection and immersion with live cells, death was delayed 

in most of the immunized groups, but clear protection was not 

observed in any of the groups [72]. When Japanese flounder 

were immunized with formalin inactivated monovalent E. 

tarda TX1, Vibrio anguillarum C312, Streptococcus iniae 

SF1, and Vibrio harveyi T4D, or with different combinations 

of these strains, the combinations of strains M4 (TX1, C312, 

SF1, and T4D mix), M3 (TX1, C312, and SF1 mix) and M2 

(TX1 and C312 mix) all induced significantly higher levels of 

protection against E. tarda, and two of them (M2 and M4) 

also effected much higher RPS rates against V. anguillarum 
[98]. Progress in vaccine preparation using diverse antigens has 

led to highly effective vaccines. Several vaccine trials coupled 

with adjuvants have shown 100% relative survival, and most 

evaluated trials were shown to produce significant protective 

effects [81]. When Tilapia fish were intraperitoneally 

immunized with formalin-killed E. ictaluri whole cells and 

rGAPDH from E. ictaluri, and both of which were emulsified 

in ISA 763A adjuvant, the RPS values were found to exceed 

71.4% in the fish after challenging with the E. tarda [8].  

Crucian carp vaccinated with live cells of E. tarda showed 

high survival rates, high IFN-g and T-bet gene expression 

levels, and increased cytotoxic T lymphocytes (CTLs) after 

challenging whereas FKC-vaccinated fish had increased IL-

4/13A and IL-10 expression levels and increased antibody 

titres, with suppressed Th1-like responses [127]. When 

Flounder were vaccinated by immersion of formalin-

inactivated E. tarda following hyperosmotic treatments and 

challenged with E. tarda, the RPS of flounder treated with 

hyperosmotic immersion (HI) at 50, 60, and 70‰ salinities 

were 79, 71, and 57% respectively. HI (50‰ salinity) could 

efficiently enhance the immune response of flounder and 

show higher RPS [23]. Immune response of flounder was 

associated with the concentration and immersion time of 

formalin-inactivated E. tarda [16]. Flagellin was found to 

enhance the immunoprotection of formalin-inactivated E. 

tarda vaccine in Turbot, and it could be used as a potential 

adjuvant in the fish vaccine [64]. 

https://www.thepharmajournal.com/
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4.2 OMP vaccines 

Exposure of rohu and catla juveniles to E. tarda bacterin 

suspension for 15 min showed significant resistance against 

challenge with virulent E. tarda [103]. A 37 kDa OMP was 

detected in several serotypes of E. tarda strains and was 

designated as an effective vaccine candidate against 

experimental E. tarda infection in Japanese flounder [43]. Liu 

et al. prepared a recombinant glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) of E. tarda, which could serve as 

an effective and practical vaccine antigen against E. tarda 

infection in Japanese flounder [65]. Verjan et al. detected seven 

antigenic proteins of E. tarda using rabbit polyclonal 

antiserum, and their amino acid sequences had identity with 

lipoproteins, periplasmic proteins, and exported and secreted 

proteins with roles in transporting metabolites across the cell 

membrane, stress response, and motility. The detected genes 

and their products could be useful for developing DNA or 

recombinant subunit vaccines [112].  

Japanese flounder (P. olivaceus) given intraperitoneal 

injection with OMP of E. tarda in FIA and challenged at day 

30 showed a higher relative percentage survival (RPS) of 71. 

The OMP of E. tarda could elicit strong and persistent 

immune responses in Japanese flounder protecting from E. 

tarda infection [109]. Olive flounder given OMVs (Outer 

Membrane Vesicles) were effectively protected, and OMVs 

may be useful in the development of an effective vaccine 

against edwardsiellosis [82]. E. tarda OmpA encapsulated in 

chitosan nanoparticles was protective when administered 

orally in Fringed-Lipped Penisula carp (Labeo fimbriatus), 

and the protection was superior to inactivated whole-cell 

vaccine without adjuvants [17]. Olive flounder fed L. lactis 

BFE920 expressing a fusion antigen composed of E. tarda 

OmpA (Outer membrane protein A) and FlgD (flagellar hook 

protein D) showed a strong protective effect against 

edwardsiellosis [7].  

 

4.3 Ghost cells, live avirulent vaccines 

E. tarda ghosts produced by gene E-mediated lysis were 

found to be new candidates for developing a vaccine. These 

ghosts showed higher bactericidal activity and protection in 

tilapia than those injected with formalin-killed E. tarda [50]. E. 

tarda ghost vaccine at different concentrations could induce 

immune responses against a homologous challenge and 

protect Sparus macrocephalus with no significant difference 

in SR and RPS [128]. A modified live vaccine was developed 

against E. tarda through the induction of rifampicin resistance 

in a native E. tarda isolate. Acquired immunity was 

stimulated against virulent E. tarda infection by single 

immersion treatment or injection of fish [20]. Mutants for the 

esrB gene (encoding for a regulator protein of T3SS) of E. 

tarda elicited significant protection against edwardsiellosis in 

turbot (Scophthamus maximus) [51]. Vaccination with natural 

E. tarda ATCC 15947 strain could also induce strong 

protective immunity against the infection of pathogenic E. 

tarda in Japanese flounder [12]. The zebra fish vaccinated with 

DaroC, DaroCDesrC, DaroCDslyA, and DaroC DeseBCD 

DesaC via intramuscular injection showed ideal protection, 

resulting in relative percent survival of 68.3, 71.3, 80.1, and 

81% against subsequent challenge with the wild-type E. tarda 

EIB202. DaroC DeseBCD DesaC showed a low virulence and 

the highest RPS on zebra fish model. The mutant DaroC 

DeseBCD DesaC might serve as an effective live attenuated 

vaccine for edwardsiellosis [123].  

Vaccination with live avirulent E. tarda (serotype A) 

activated specific antibody production against virulent E. 

tarda and increased the expression of cytokine genes, 

including interleukin-1b (IL-1b), type 1 interferon (IFN), and 

IFN-g in head-kidney of the Japanese flounder [104]. N163 is 

the immunodominant region of E. tarda FliC which may 

induce immune responses in Japanese flounder [38]. Using 

attenuated V. anguillarum named MVAV6203 to express 

protective antigen GAPDH of E. tarda, it was found that the 

multivalent bacterium presented protective efficacy against 

infection by both V. anguillarum and E. tarda (RPS = 70%) 
[137]. Using allelic exchange strategy, an E. tarda live 

attenuated vaccine candidate WED was developed, which is a 

mutant of E. tarda EIB202 with deletions in the T3SS genes 

eseB, eseC, eseD, and escA, along with the aroC gene. WED 

showed 5700-fold higher 50% lethal dose (LD50) than that of 

the wild-type E. tarda EIB202. Vaccination with WED by 

intraperitoneal or immersion injection routes elicited 

significant protection against the challenge of the wild-type E. 

tarda in turbot (Scophthamus maximus) [121]. A combination 

vaccine of live attenuated E. tarda WED, and V. 

anguillarum MVAV6203 was found to be effective. When the 

vaccinated Zebra fish were challenged with E. tarda and V. 

anguillarum at 30 days post-vaccination, the fish exhibited 

the relative protective survival of 70% and 90%, respectively 
[22]. EsrB variants generated by error-prone PCR mutagenesis 

were incapable of activating T3SS and T6SS expressions but 

efficiently enhanced the yields of hemolytic activity in ΔesrB 

mutant. The isolated strain was YWZ47 with attenuated 

virulence, increased host invasion ability and showed high 

protection efficiency for the challenge of wild-type E. tarda 

when inoculated in Turbot by both immersion and 

intraperitoneal injection routes [130]. Live vaccines activate 

biosynthesis of unsaturated fatty acids, the TCA cycle and 

reduce aminoacyl-tRNA biosynthesis, and oleate induces 

effective protection against E. tarda, and thus Live E. tarda 

vaccine enhances innate immunity by metabolic modulation 

in zebrafish [24]. 

 

4.4 Recombinant vaccines 

A recombinant scFv vaccine emulsified with Freund's 

incomplete adjuvant (FIA) was developed. The recombinant 

anti-idiotypic antibody scFv, which lacks Fc domain, resulted 

in efficient protection against infection by different serotypes 

of E. tarda [84]. A comparative study of the effects of FIA and 

aluminium adjuvants was made to study the immune response 

to an E. tarda major antigen, and he found that FIA was 

immunologically more potent than aluminium-based 

adjuvants [36]. A D15-like surface antigen, Esa1, when used as 

a recombinant subunit vaccine, was able to induce protective 

immunity in Japanese flounder against E. tarda challenge [97]. 

A DNA vaccine was developed, pCEsa1, based on the D15-

like surface antigen Esa1 derived from E. tarda, which 

afforded 57% protection [100]. Japanese flounder with live 

DH5α/pTAET21 (E. coli DH5α harbouring plasmid 

pTAET21) elicited immune protection that was significantly 

higher in level than that induced by vaccination with purified 

recombinant Eta21 (E. tarda antigen). Vaccination with 

DH5α/pTAET21 and recombinant Eta21 both induced the 

production of specific serum antibodies at four to eight weeks 

post-vaccination. Eta21 delivered by DH5α/pTAET21, is an 

effective vaccine candidate against E. tarda infection [37]. Eta2 

is a protective immuno gen that induces different immune 

responses as a purified recombinant subunit vaccine and as a 

DNA vaccine. High level of protection was observed in rEta2 

https://www.thepharmajournal.com/
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and it may be due to the stimulating effect of the aluminium 

hydroxide (AH) which was added in the rEta2 vaccine 

formulation. The relative percent of survival calculated with 

PBS + AH (for subunit vaccine) is 83% [99]. Purified 

recombinant DnaJ induced protective immunity in Japanese 

flounder when used as a subunit vaccine, and aluminium 

hydroxide was used as an adjuvant [14].  

 Recombinant outer membrane protein A (OmpA) of E. tarda, 

could act as a potential vaccine candidate for common carp 
[70]. P. olivaceus immunized with recombinant strain BL21 

(DE3) Pet-28a-OmpS (2) showed a protective ability of 70% 

to E. tarda [134]. OmpC (Outer membrane protein C) of E. 

tarda is an immunogenic surface protein, which induces an 

innate and humoral immune response in flounder and evokes 

highly protective effects for E. tarda challenge when used in 

the form of a recombinant protein [62].  

 Fusion protein Sia10-DnaK (S. iniae antigen Sia10 and E. 

tarda heat shock protein rDnaK) was expressed in E. coli 

DH5α via the plasmid pTDK, and when flounder fish were 

vaccinated with live DH5α/pTDK, strong protection was 

observed against E. tarda with an RPS rate of 74% against E. 

tarda. The rDnaK is an intrinsic ATPase with immuno 

protective property, and that Sia10-DnaK delivered by a live 

bacterial host is an effective bivalent vaccine candidate for E. 

tarda and S. iniae infection [31]. Recombinant NanA, when 

introduced into flounder as a subunit vaccine, produced a 

protection rate of 69% for lethal E. tarda challenge, 

suggesting that rNanA is a protective immunogen [40]. 

Recombinant Inv1 as a subunit vaccine induces strong 

protective immunity in flounder against E. tarda infection, 

with the induced protection rate of 88.9% [55].  

Recombinant GAPDH could be a broad-spectrum vaccine 

candidate against polymicrobial infections in aquaculture, and 

a high level of RPS (at least 60%) was achieved in turbot 

against E. tarda [58]. Vaccination of turbot (S. maximus) with 

Δugd by intraperitoneal injection elicited significant 

protection against the wild-type E. tarda strain with an RPS 

of 76.70% [69]. Recombinant Eta1, when used as a subunit 

vaccine, induced a protection rate of 83.3% upon lethal E. 

tarda challenge in flounder [101]. Flagellar proteins are 

potential vaccine candidates. After expression in E. coli and 

purification, the recombinant FlgD was evaluated in zebrafish 

and turbot by intramuscular injection and found to lead to a 

high RPS for E. tarda EIB202 challenge, making recombinant 

FlgD a promising candidate vaccine against edwardsiellosis 
[133]. The adjuvant effects in the immunity of two forms of 

flounder IL-6 (rIL-6 and pcIL-6) were evaluated and 

comparatively analysed on E. tarda subunit vaccine rOmpV 

in flounder following the vaccination. The rIL-6 could induce 

much stronger humoral and inflammatory immune responses, 

whereas the cellular immunity enhanced by pcIL-6 was much 

stronger than rIL-6 [25]. When NADP-dependent isocitrate 

dehydrogenase (IDH) of E. tarda was recombinantly 

expressed, and the vaccine potential of rIDH was tested in a 

flounder model, and the results showed that rIDH produced a 

RPS of 73.3% and induced both Th1 and Th2 type of immune 

responses [108]. The adjuvant effects of four recombinant Th0 

cytokines including IL-1β, IL-8, TNF-α, =and G-CSF on E. 

tarda subunit vaccine rOmpV were comparatively 

investigated in flounder, and he reported that rIL-1β and rIL-8 

could be promising adjuvants for subunit vaccines against E. 

tarda as they produced higher RPS of 75% and 68%, 

respectively [26]. 

 

4.5 DNA vaccines 

TX5RMS10 is a genetically assembled vaccine that possesses 

the combined advantages of an attenuated live bacterial 

vaccine (E. tarda) and a DNA vaccine (S. iniae). When 

flounder were vaccinated with TX5RMS10 via oral and 

immersion routes, the vaccinated fish exhibited relative 

percent survival rates of 69–83% [96]. DNA vaccines based 

on E. tarda antigens were constructed and the immune 

protective efficacies of the vaccines were studied in Japanese 

flounder model. The DNA vaccines were based on antigens 

Eta6 and FliC in the form of plasmids pEta6 and pFliC and 

chimeric DNA vaccine, pCE6 (which encodes Eta6 fused in-

frame to FliC), and pCE18 (which expresses FliC fused to E. 

tarda antigen Et18) [39]. A multivalent vaccine candidate 

WEDDeltaasdB/pUTa4DGap, was developed which 

combined a diaminopimelic acid (DAP)-dependent mutant 

(WEDDeltaasdB) with a non-antibiotic resistant vector 

containing asdB gene and expressing a protective antigen 

gene gapA34 from Aeromonas hydrophila LSA34. The 

vaccine was shown to evoke an effective immune response 

against both E. tarda and A. hydrophila LSA34 and has great 

potential for broad applications in aquaculture [129].  

GroEL of E. tarda is a strongly immunogenic protein that 

exists both in the outer membrane and the secretome. It 

produced an RPS of 60% when formed as a DNA vaccine, 

which indicated that GroEL could be a vaccine candidate for 

E. tarda infection. Moreover, pCG-GroEL could induce a 

strong innate immune response, humoral immune response, 

and cellular immune response, which were essential for 

combating both extracellular and intracellular E. tarda [61].  

A bicistronic DNA vaccine was constructed in pIRES plasmid 

and designed as pGPD+IFN. The vaccine contained an 

immune adjuvant gene as interferon gamma gene of L. rohita 

and an antigenic gene which was GAPDH of E. tarda. The 

immunized fish exhibited an RPS of 63.16% [48]. Nano 

conjugated bicistronic DNA vaccine using chitosan 

nanoparticle (CNPs-pGPD+IFN) was designed against E. 

tarda infection in L. rohita. This vaccine can be administered 

by oral or immersion route with maximum effectiveness [45]. 

A bicistronic DNA vaccine macromolecule complexed with 

poly lactic-co-glycolic acid (PLGA) and PLGA chitosan 

nanoparticle (Chit NPs) was developed. PLGA has an 

adjuvant property. This vaccine could enhance the mucosal 

immunity of L. rohita against E. tarda infections [52]. Species-

specific IgM antibodies was developed using IgM antibodies 

of L. rohita and enhanced the mucosal immune response of L. 

rohita using the recombinant bicistronic nano DNA vaccine 

(RBND Vac). The immunoglobulin in L. rohita primed with 

RBND Vac complex provided 64.70% protection against E. 

tarda [53]. Co-vaccination with rOmpV with rIL-2 or pcIL-2 

could induce stronger immune responses and could evoke 

increased immune protective efficacy against E. tarda 

infection in flounder [107]. 

 

5. Conclusion 

E. tarda is considered as a threatening pathogen to 

aquaculture as it has resulted in devastating outbreaks and 

economic losses in fish farming. The aim of this review is to 

gather knowledge about the bacterial pathogenesis and 

virulence factors and to have a better understanding about 

various vaccination strategies that have been employed so far 

in order to come up with successful commercial vaccine for 

use in aquaculture.  
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