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Abstract 
Tremendous progress has been made continually with the over-expanding genomics technologies to 

uncover and understand animal genomes. However, the impact of genomics data on animal improvement 

is still far from satisfactory, largely due to the lack of effective phenotypic data; our capacity to collect 

useful high-quality phenotypic data lags behind the current capacity to generate high-throughput 

genomics data. Thus, the research bottleneck in animal sciences is shifting from genotyping to 

phenotyping. High-throughput phenotyping techniques offer a new opportunity to enhance genomic 

improvement of livestock, especially for novel phenotypes. Together the growing demand for food and 

the advancement in sensing technology has the potential to make animal farming more centralized, large-

scale, and efficient. The use of sensors, big data, artificial intelligence, and machine learning can help 

animal farmers to lower production costs, increase efficiencies, enhance animal welfare and grow more 

animals per hectare. One of the most relevant challenges in this context is the handling of large-scale data 

provided by automated processes such as image collection, continuous real-time sensor-based 

measurements, and spectroscopy reports, among others. The extraction of biologically relevant features 

from large datasets generated by automatic devices can be done further by using machine learning 

algorithms. Many studies have demonstrated the usefulness of advanced remote sensing technologies 

coupled with machine learning (ML) approaches for the accurate prediction of valuable animal traits. 

Although AI and ML algorithms have developed so fast, there is a lack of standardization in the 

collection and sharing of data globally. However, as more farms get connected to technology, AI and 

sensing technologies will start playing a more decisive role in helping farmers see patterns and solutions 

to pressing problems in modern animal farming. 

 

Keywords: Artificial intelligence, high-throughput phenotyping, machine-learning, sensors 

 

Introduction 

Enhancing milk and meat productivity has long been a global concern. Researchers are 

realizing that current breeding projects will not be sufficient to meet anticipated future food 

demands under the present climate scenario. Screening animals that lead to overall yield in the 

field necessitates immediate action. Nowadays, traditional breeding operations are being 

transformed into more efficient modern breeding programs by incorporating emerging 

technologies, most notably high-throughput phenotyping (Crossa et al., 2021) [23]. Although 

genomic information on various animal breeds is publicly available and accessible online, the 

phenotypic data on their genomes is still limited, as environmental factors impede phenome 

characterization and increase the likelihood of error in the measurements of traits (Rahaman et 

al. 2015) [92]. Genomic selection (GS) is an approach that uses genome-wide marker 

information to predict genomic estimated breeding values of lines in a breeding population 

(Meuwissen et al. 2001) [71]. When compared to other traditional approaches, such as marker-

assisted selection (MAS), GS has some inherent advantages, including increasing genetic gain 

by shortening breeding cycles (Heffner et al. 2010) [45] and capturing minor effect loci based 

on markers spread across the entire target genome (Hayes et al. 2009) [43]. Accurate prediction 

model training for GS requires reliable phenotypes in addition to genotyping. Due to high 

labor and time costs, phenotyping is considered an important factor limiting genetic gains in 

animal breeding. As a result, attempts have been made to develop high-throughput 

phenotyping (HTP) platforms because traditional phenotyping techniques are prohibitively 

expensive, time-consuming, slow, and frequently harmful, and they can only analyse a few 

variables at a time (Hein et al., 2021) [46]. 
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Accurate and large-scale phenotypic data are required for 

successful animal breeding programs and for the genomic 

dissection of complicated traits. Non-destructive phenotyping, 

a modern technology, provides an additional dimension for 

data collection by increasing the speed, precision, and 

analysis of captured data (Yang et al., 2020) [124]. Digital 

image analysis extracts meaningful information from images 

and can be used as an input for imaging processing techniques 

that directly apply to livestock phenotyping. Other 

advancements in technology, such as automatic feeding 

systems, activity monitor sensors, and indirect biomarkers at 

physiological and cellular levels, have the potential to provide 

a wide range of novel phenotypes. Furthermore, infrared 

spectrometry is gaining popularity in precision livestock 

farming as a non-destructive measurement tool and a valuable 

resource for online analysis. Historically, animal farming has 

always been decentralized, on a scale that a few people can 

manage. And until about a century ago, most animal farmers 

lacked access to advance technologies like high-speed 

internet, smartphones, and low-cost computing power. Both 

of these conditions are rapidly changing right now. HTP is 

essential as the global demand for various meat and animal 

products is expected to rise by more than 70% over the next 

three decades (Rojas-Downing et al., 2017) [95] and secondly, 

more than half of the world's population is directly linked to 

the internet via smartphones or computers. A large number of 

animal farmers now have easy access to computing power. 

We now know that meat consumption has increased wherever 

populations and incomes have increased. Because land and 

other natural resources are limited, we will need to identify 

more effective ways to grow more animals per hectare to meet 

this growing demand and we must now produce animals with 

fewer resources such as water, land, and other natural 

resources. This also implies that manual animal farming 

processes may no longer be adequate. It also means that we 

must devise methods and systems to help us achieve greater 

profits in animal farming. Computers, sensors, cloud 

computing, machine learning (ML), and artificial intelligence 

(AI) are already transforming various industries. They 

generate greater profits and efficiencies (Wolfert et al., 2017) 

[121]. This is why we must investigate how advanced 

technologies can assist us in achieving greater efficiencies and 

gains in animal farming. Brito et al. argue that using large-

scale phenotyping to evaluate genomic traits for animal 

welfare-related traits is a better solution for accurate selection 

in a commercial production system (Rajawat et al., 2022a; 

Rajawat et al., 2022b) [83, 94]. They described the main 

bioinformatic and statistical tools available for this purpose, 

with a focus on approaches to developing novel HTP-based 

welfare indicator traits, such as movement recording using 

accelerometers and wearable sensors. Sensor-based 

phenotypes, like IMU-based movement capture, infrared 

thermography, and sound analysis, in conjunction with big 

data science, are critical for translating animal welfare 

indicators traits into precise genomic breeding values. This 

can be used in commercial selective breeding to continue 

improving animal resilience. The ability to collect and use on-

farm data for breeding purposes transformed the beef, dairy, 

poultry, and swine industries, resulting in massive 

productivity and efficiency gains (Hill, 2016) [49]. Similar 

opportunities for enormous profits may exist in several other 

contexts of the livestock industry using sensors and other 

high-throughput phenotyping technologies (Science 

Breakthroughs to Advance Food and Agricultural Research 

by 2030, 2019). 

 

Sources of significant expenses in livestock farming 

Stocking rate, feeding, and disease management can all be 

major cost drivers in animal farming. Farmers can optimise 

their major expenses and decrease their production costs by 

increasing the number of animals in a system due to 

economies of scale (Rojas-Downing et al., 2017) [95]. Feed 

intake and efficiency are essential contributors to 

sustainability in the dairy cattle industry because they have an 

economic and environmental impact. The feed has the most 

significant economic impact on dairy farm profitability, 

accounting for more than 40% of milk production expenses 

(National Milk Cost of Production). Feed efficiency 

improvements will also benefit the environment by lowering 

greenhouse gas emissions from cattle and manure, as well as 

land requirements for manure disposal and water needs 

(Knowlton et al., 2004; Von Keyserlingk et al., 2013) [55, 117]. 

In a large animal farm, where thousands of animals are 

housed together, a contagious disease outbreak can result in 

significant losses. The infectious disease outbreak will be 

difficult to contain in such a setting unless the farmer takes 

timely early interventions. When symptoms appear, it is 

frequently too late to intervene. If a disease is allowed to 

spread unchecked, it will result in animal deaths, poorer 

health outcomes, and financial losses. On the other hand, an 

intelligent farm with multiple sensors may alert the farmer to 

abnormal animal behavior in many initial phases. 

 

HTP Platforms 

Over the last decade, a variety of high-throughput 

phenotyping methods/platforms have been used in animals for 

the identification of functional limiting factors, determining 

the optimal nutrient composition of animal feed, evaluating 

animal management to evaluate performance (Ferguson et al., 

2014) [31], examining strategies for lowering nutrient excretion 

into the environment (Pomar et al., 2019) [90], or forecasting 

outcomes in other covariates (Ferguson et al., 2014) [31]. 

Animal phenotyping is constantly evolving, with low 

throughput phenotyping and invasive methods being 

overtaken by non-destructive, high-throughput methods 

(Rahaman et al., 2015; Mir et al., 2015) [92, 73]. Over the last 

decade, rapid advances in non-destructive inexpensive sensors 

and imaging techniques have revolutionized animal 

phenomics. The current non-destructive high-throughput 

phenotyping platform (Figure 1) uses sophisticated 

technologies such as activity sensors such as accelerometers, 

pedometers, and GPS devices to track the location, speed, and 

time of movement. A sensor method is used to predict calving 

and lameness, and an activity-based ODS can be used to 

manually select cows in oestrus. The use of non-invasive 

sensors can enable the phenotyping of several thousand of 

animals in a day, similar to the impact of high throughput 

DNA sequencing technology in animal genomics (Finkel et 

al., 2009) [33]. (Table 1, shows the various studies done by 

using phenomics platforms for trait phenotyping in animals). 

It does, however, entail generating an unprecedented amount 

of complex data. Data storage and transfer can be limiting, 

especially in the field. Furthermore, image processing is a 

time-consuming task that limits the ability of these tools to 

achieve high-throughput screening. Same is true for managing 

high-throughput data of animal breeding (Saravanan et al., 

2019) [99]. 

https://www.thepharmajournal.com/
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Fig 1: Schematic representation of High throughput Phenotyping in Animals 

 
Table 1: Studies conducted by using various phenomics platforms for trait phenotyping in animals 

 

Platform/Recording technique Trait studied Method applied Reference 

Remotely sensed imagery (Very high-resolution 

satellite imagery, aerial photography and UAVs) 

Cows posture (’standing’, 

‘lying’ and ‘grazing) 

Deep learning methods (Nanonets 

API, ENVI 5.4 deep learning 

module, and YOLO v3) 

Mucher et al., 2022 [129] 

Ultra-wide band positioning system Lying behavior Bagged tree algorithm Adriaens et al., 2022 [130] 

Sensor Resilience trait of dairy cows Random forest algorithms Ouweltjes et al., 2021 [81] 

Sensor Lameness Additive logistic regression Kamphuis et al., 2013 [131] 

Sensor Calving management Logistic regression models Rutten et al., 2017 [96] 

Kinect Camera Muscles grading in pigs Gradient boosted classifier Alsahaf et al., 2019 [7] 

 

Phenotyping platforms in trait phenotyping: some 

examples 

By making use of cutting-edge technologies, many issues in 

animal farming can be resolved. Finding the best options to 

reduce expenses, raise output, boost efficiency, and develop 

the best diet formulations are a few examples (Ferguson et al., 

2014) [31]. Advanced models may even take into account 

variables like genetics, environment, and management 

priorities in order to provide relevant and contextually optimal 

solutions. In general, the more diverse the datasets collected 

and analyzed by a system, the greater its chances of arriving 

at accurate and optimal solutions (Ellis et al., 2020) [29]. HTP 

can help in precise livestock farming in various ways, a few 

examples are discussed in this review. 

 

Monitoring animal health 

High-throughput methods have also been used to 

continuously monitor key animal health parameters such as 

movement, air quality, and food and fluid consumption. By 

continuously gathering this data and utilising cutting-edge AI 

and ML algorithms to forecast deviations or irregularities, 

farmers can now identify, predict, and prevent disease 

outbreaks even before a significant attack (Neethirajan et al., 

2020) [78]. A system like this can reduce production costs 

while also alerting farmers to the possibility of disease even 

during the preclinical stage. This, in turn, will assist farmers 

in taking timely action to avoid catastrophic losses 

(VanderWaal et al., 2017) [116]. At a much lower cost, they can 

immediately predict and stop the spread of contagious 

diseases like the African swine flu. The transmission of many 

infectious diseases may now be predicted by improved 

technology before it spreads widely, which is more 

significant. 

 

Lameness prediction in early stages 

In other situations, algorithms can forecast disease symptoms 

like lameness based on the motions of the animal. Preclinical 

lameness can be consistently detected by modifications in 

gait, excessive use of certain body parts, and inactivity in 

other body parts (Taneja et al., 2020) [111]. Lameness is the 

third most important disease affecting farming (Neethiranjan 

et al., 2020) [78] because it reduces milk production and 

increases injury risk (Warner et al., 2020) [118]. Predicting 

lameness ahead of time can help farmers avoid significant 

financial losses. Another study found that infected pigs move 

less, by up to 10%, during the first two days of infection. This 

can be used to isolate infected animals before they infect a 

large number of other animals (Fernández-Carrión et al., 

2017) [32]. Finally, farmers can help to prevent diarrhea and 

bacterial infections in pigs by using sensors that gather 

environmental data such as temperature, gas production, and 

humidity. 

 

Locating animals in an extensive production system 

HTP has been used to locate animals in an extensive system, 

and information about cattle in extensive production systems 

can be obtained using remotely sensed imagery (such as very 

high-resolution satellite imagery, aerial photography, and 

unmanned aerial vehicles (UAVs)) and Convolutional Neural 

Networks (CNNs) as AI technology for object-based 

detection of cattle in large datasets (Kellenberger, Marcos and 

Tuia 2018) [54]. Using UAV imagery to identify individual 

cattle and their poses can provide information on resilience 

and efficiency. 

https://www.thepharmajournal.com/
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Monitoring of lying behavior of animals 

The lying behavior of animals can be observed by using ultra-

wideband (uwb) positioning systems. It has been 

demonstrated that it changes in response to changes in health 

and welfare status (Tucker et al., 2021) [114]. Lameness, for 

example, reduces the number of times an animal gets up or 

lies down while increasing overall lying duration. Similarly, 

udder infections that cause an animal to become extremely ill 

and metabolic issues that affect rumination time will alter 

lying behavior. Accurate detection and monitoring of lying 

over time can reveal health and welfare status, contribute to 

new precision phenotypes, and accurately and non-invasively 

evaluate, for example, housing situations or management 

practices. One method is to use 3-dimensional spatial data, 

such as that provided by modern ultra-wideband positioning 

systems currently being developed and commercialized. 

Lameness, mastitis, and infertility have been identified as the 

top three dairy cow health issues associated with economic 

losses in the dairy industry (Juarez et al., 2003; Panigrahi et 

al., 2022a) [51, 93]. Lameness has a negative impact on welfare 

because it is associated with pain (Whay et al., 1997; Bicalho 

et al., 2007) [120, 11], and it reduces farm profitability due to 

poorer reproductive performance, loss of milk production, and 

increased treatment and culling costs (Tranter and Morris, 

1991; Sprecher et al., 1997; Green et al., 2002) [112, 109, 38]. 

Typically, lame cows are identified visually by observing 

their stride and back position (Sprecher et al., 1997) [109]; 

however, in larger herds, as the number of cows maintained 

per farm labour unit rises, visual identification of lame cows 

becomes more challenging. 

 

Resilience detection in animals 

Lifetime resilient dairy cows are defined as animals with a 

high likelihood of completing multiple lactations, good 

productive and reproductive performance, few health 

problems that are easily overcome, and efficient and 

consistent milk production (Adriaens et al., 2020) [3]. 

Improving resilience in dairy cows has significant benefits: it 

enhances animal health and welfare (Mulder and Rashidi, 

2017) [76], farm productivity (Colditz and Hine, 2016, 

Ouweltjes et al., 2021) [22], the need for antibiotics (König and 

May 2019) [58] and the sector's environmental impact. Recent 

technological advancements and increased use of other 

sensors provide the opportunity to combine continuous data 

recordings from various sensors to improve resilience 

prediction. In contrast to projections based purely on daily 

milk characteristics, Adriaens et al. (2020) [3] observed that 

incorporating activity sensor data considerably (p 0.01) 

enhanced resilience prediction accuracies. From a biological 

perspective, Poppe et al. (2020) [91] and Adriaens et al. (2020) 

[3] attempted to construct resilience indicators. 

 

Survival prediction in cattle 

Cow survival is a multifaceted trait that incorporates traits 

such as milk production, fertility, health, and environmental 

factors such as farm management (van der Heide et al., 2020) 

[115]. A high farm average of lactations obtained is another 

sign of successful farming methods with regard to animal care 

(Barkema et al., 2015) [10]. Because there are numerous 

advantages to cows that live long, productive lives, farmers 

would be wise to keep only those cows that are likely to thrive 

in a production environment 

(https://www.farmersweekly.co.za/). By predicting a cow's 

ability to survive early on, it would be possible to select cows 

with a high probability of surviving to higher lactations. The 

ensemble method (Knutti et al., 2010; Wozniak et al., 2014) 

[56, 123], also known as a hybrid classifier (Wozniak et al., 

2014) [123], decision fusion method (Sinha et al., 2008) [108], or 

aggregation method, can be used to predict survival in dairy 

cattle (Satopaa et al., 2014) [105]. 

 

Improving pig farming 

Several pig farms have made use of computer vision 

technology (Matthews et al., 2015) [67]. Attempts to analyze or 

estimate carcass composition in-vivo using image-based 

solutions are most relevant to our problem (Scholz et al., 

2015; Carabs et al., 2016) [107, 17]. Kinect sensors have 

previously been used in pig farming applications such as 

monitoring and detecting pig behaviors in pen (Lee et al., 

2016) [66], automated weight estimation (Kongsro et al., 2014; 

Pezzuolo et al., 2018) [57, 88], and walking pattern analysis 

(Stavrakakis et al., 2015) [110]. The ML algorithm can also be 

used to predict slaughter age in pigs, allowing for pig 

grouping prior to the initiation of the finishing phase (Alsahaf 

et al., 2018) [6]. Gradient Boosting Machine (GBM) models 

can be utilised to determine which ejaculate should be 

processed for AI doses (Kamphuis et al., 2020) [53]. Using ML 

algorithms such as the Gradient Boosting Machine algorithm, 

pigs that are prone to developing abnormal growth rates, meat 

percentages, or pneumonia during the growing-finishing 

phase can be identified; early detection would help to prevent 

heterogeneous pens through management (Mollenhorst et al., 

2019) [74]. 

 

Calving management in dairy cows 

Calving management is critical for the health and survival of 

dairy cows and their calves. A sensor system that predicts the 

moment of calving could help farmers check cows for calving 

more efficiently (Rutten et al., 2017) [96]. Observing a cow 

prior to calving is important because dystocia can occur, 

necessitating timely intervention to mitigate adverse effects 

on both the cow and the calf. Sensor data can be more 

valuable than the expected calving date alone in predicting the 

start of calving (Rutten et al., 2017) [96]. Sensors can 

automatically monitor several behavioral and physiological 

parameters associated with the advent of calving. Dairy cows' 

feeding and ruminating behavior decreases gradually in the 

last two weeks before calving (Büchel et al., 2014) [14] and 

drops abruptly at calving (Bar and Solomon, 2010) [9]. Sensors 

appear to be capable of identifying these variations (Bar and 

Solomon, 2010; Bucher and Sundrum, 2014; Schirmann et al., 

2013) [9, 15, 106]. Time spent feeding decreases, as does dry 

matter intake (Schirmann et al., 2013; Bucher and Sundrum, 

2014) [106, 15], and activity changes in the 24 hours preceding 

calving (Clark et al., 2015; Miedema et al., 2011; Saint-Dizier 

and Chastant-Maillard, 2015) [21, 72, 97]. Titler et al. (2015) [127] 

demonstrated that an activity index could accurately predict 

whether a cow would calve within 6 hours of an increment in 

the activity index. Previous research has shown that 

temperature (measured at the vulva, rectum, and rumen) drops 

during the 24 hours preceding calving (Saint Dizier and 

Chastant-Maillard, 2015) [97]. Ouellet et al. (2016) [80] proved 

that all of these sensor-measured parameters have predictive 

value for calving. If the start of calving could be predicted 

more accurately than the expected calving date, farmers 

would be able to identify when a cow requires intensive 

supervision. 
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Detection of oestrus 

Oestrus detection is regarded as one of the most labor-

intensive and skilled tasks required of dairy farm personnel, 

and it is prone to a high error rate (McGowan et al., 2007; 

Hempstalk et al., 2010; Burke et al., 2012) [68, 47, 16]. 

Inexperienced farm staff, poor use of aids by farm staff, and 

weak oestrus displays by dairy cows are all factors that 

contribute to poor oestrus detection performance (Burke et al., 

2012) [16]. Activity-based oestrus detection systems (ODS) are 

one such commercially available option that uses a pedometer 

or accelerometer technologies. These systems are based on 

the assumption that oestrus is associated with an increase in 

locomotion activity (Eradus et al. 1992) [30]. 

 

Biomarker Development 

Deep phenotyping can yield biomarkers that are sensitive, 

specific, and relatively inexpensive for detecting the trait or 

disease phenotype of interest for accurate animal 

classification. Any substance or process that can be measured 

in a biological specimen and is always associated with the 

trait of interest is a biomarker (Trusheim et al., 2007) [113]. 

Biomarkers can be molecules like RNA, metabolites, 

microbes, or proteins/peptides, but they can also be based on 

other modalities like imaging (Hartwell et al., 2006) [42]. 

Biomarker assays should ideally be minimally invasive, i.e., 

detectable in peripheral blood or urine (Hartwell et al., 2006; 

Ziegler et al., 2012) [42, 126]. Biomarkers are also used as 

screening tests for diseases that are subclinical, asymptomatic, 

or in their early stages. Furthermore, the benefits of early 

intervention/prevention (such as improved disease outcomes) 

should outweigh the costs of the screening test (Ziegler et al., 

2012) [126]. Mid-infrared spectral data can be obtained quickly 

and cheaply from samples collected from monthly dairy herd 

improvement programs. A growing body of literature 

indicates that such data has excellent potential for predicting 

disease risk (Grelet et al., 2016) [39], greenhouse gas emissions 

(Dehareng et al., 2012) [25], and a variety of other 

physiological states in the cow (De Marchi et al., 2014; 

Gengler et al., 2016) [24, 34]. 

 

Big data 

To meet the needs of a growing human population, the 

livestock industry recognizes that there are challenges and 

opportunities to be more efficient, environmentally friendly, 

and societally conscious. These challenges present 

opportunities for more sustainable and profitable agriculture. 

The data types required to meet these grand challenges are 

diverse, presenting numerous opportunities for scientific 

discovery to link genotype to phenotype, develop 

computational tools for big data analytics, engineer new 

sensor technologies, develop new data coordination systems, 

and ultimately use this information for improved animal 

production and welfare (Panigrahi et al., 2020) [84]. The 

availability of low-cost computing power, massive storage 

media, and internet connectivity have exponentially increased 

the amount of data collected from individuals and groups of 

livestock. When the correct analytical framework is used, 

combining individual animal records such as weights, 

treatments, and carcass characteristics with cohort-level 

information such as daily feed deliveries, diet ingredients, 

group weights, and movements gives significant amounts of 

data useful for analysis. Automated systems for high-input 

data collection are becoming more common, resulting in an 

exponential increase in the availability of information on a 

wide range of hosts, pathogens, and environmental factors 

affecting animal health. For example, capturing whole 

genome sequences and gene expression data from both hosts 

and pathogens is becoming more common, as is the use of 

electronic medical records, animal genomics and digitized 

images (Ahmad et al., 2020; Chhotaray et al., 2020; Kaisa et 

al., 2020; Chhotaray et al., 2021a; Chhotaray et al., 2021b; 

Pal et al., 2022) [5, 18, 52, 19, 20, 82]. Genome sequences are also 

being utilized for detecting selection signatures and studying 

the nature of evolution in general (Saravanan et al., 2020a; 

Saravanan et al., 2020b; Saravanan et al., 2021a; Saravanan et 

al., 2021b) [101, 103, 100, 104]. Furthermore, sensors, drones, and 

satellites routinely collect data in huge amounts. Sensor 

technologies are increasingly being used to monitor animal 

welfare and health in cattle (Smith et al., 2006; Matthews et 

al., 2016) [67, 128], pigs (Guarino et al., 2017) [41], and poultry. 

This transition is pushing animal science into the era of Big 

Data, in which data sets are of lower fidelity and are collected 

quickly and in large quantities, and where equipment may 

vary significantly and in less coordinated ways (Parasar et al., 

2021; Patra et al., 2021) [86, 87]. Because of the growing 

availability of such electronic data, massive databases have 

been created that are too big and complex to manage using 

traditional data analysis tools. Specialized tools are required 

in these cases to collect, organize, and analyze data. These 

datasets and the tools used to analyze them have been dubbed 

"big data." While the term "big data" has become ubiquitous, 

its meaning is frequently ambiguous, particularly because it 

tends to conflate data with the analytical methods used to 

analyze that data. Big data have many different definitions 

provided by authoritative sources (commercial technology 

organizations such as Microsoft and Google are frequently 

cited sources of definition), but big data "Vs" is a common 

theme amongst these. The so-called four V model (IBM, 

http://www.ibmbigdatahub.com/infographic/four-Vs-big-data) 

defines big data based on collection properties, but a literature 

review shows that the Vs are expanding at the same rate as the 

data itself, from 4- to 7- to 10- to 42-V models. Big data is 

defined by the four V models based on four key attributes: 1) 

volume, 2) velocity, 3) variety, and 4) veracity. Volume is 

simply the available amount of data. The speed with which 

users want to access or use data is called velocity. The various 

forms in which data is received are referred to as variety. 

Veracity focuses on the need to clean and edit large amounts 

of data in order to derive sound inferences from quality-

controlled records. Value is frequently added to V models 

because, as data becomes less expensive to collect, the utility 

of those observations is often questioned unless there is an 

improvement in the methods/technology used to generate the 

data and, as a result, the quality of these data. However, it is 

unclear whether this is necessary in the livestock sector 

because the value proposition is central to the decision to 

collect data in the first place (Saravanan et al., 2022a) [102]. 

The use of "big data" will rely on careful data editing to 

remove noise and focus on the informative aspects of the data 

that are valuable for analytics, so quality validation is more 

important. The European Organization for Nuclear Research's 

Large Hadron Collider (ACM, 2011) and the Human Genome 

Project (Green et al., 2015) [37] are canonical examples of big 

data in the sciences (Saravanan et al., 2022b) [98]. Precision 

agriculture has a growing literature, which frequently overlaps 

with several big data concepts (e.g., Wolfert et al., 2017; 

Morota et al., 2018; Weersink et al., 2018; Mehrotra et al., 

2021a; Mehrotra et al., 2021b) [122, 75, 119, 69, 70].  
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Precision agriculture aims to make appropriate management 

decisions by using detailed, frequently collected observations 

of individual animals. This includes identifying changes in 

productivity, determining reproductive status, early detection 

of health problems at the individual and group levels, and 

grouping animals with similar nutritional or other 

management needs in a livestock setting (Panigrahi et al., 

2022b) [85].  

The transition from the barn or pen level to the farm or 

landscape level (i.e., country, state, or regional location 

attributes) can be accompanied by a dramatic increase in the 

amount of data available, including soil composition, weather 

data, and water availability, and utilization. Apart from this it 

is also becoming increasingly important in animal 

identification at molecular level (Kumar et al., 2019: Kumar 

et al., 2021a; Kumar et al., 2021b; Kumar et al., 2021c; 

Kumar et al., 2021d; Kumar et al., 2022) [59, 60, 62, 63, 64, 61]. 

 

Big data analytics 

Big data analytics is the process of analyzing large amounts of 

diverse data sets using advanced analytic techniques. These 

various data sets include unstructured, semi-structured, and 

structured data from multiple sources and sizes ranging from 

terabytes to zettabytes. Accelerometers and real-time location 

systems, for example, capture recursive numeric positions of 

individual animals in relatively short time steps. Algorithms 

can use this data to determine whether these movements are 

within or outside of expected ranges, as well as to identify 

patterns associated with physiologic changes such as estrus or 

disease (Table 2, shows how advanced algorithms can help 

animal farmers). Cohort and individual animal data, when 

combined with individual animal activity monitoring systems, 

can yield large data sets useful for both descriptive and 

predictive analytics. The methodology for using scientific 

information to make decisions is as follows: develop a 

hypothesis/prediction, test the prediction, evaluate the results, 

interpret the results, and revise and repeat the process (Larson 

and White, 2015) [65]. To discover meaningful patterns, 

predictive analytics employs various analytic techniques such 

as traditional statistics, machine learning, and data mining 

(Abbott, 2014) [1]. Predictive analytics is focused on making 

predictions, and these models can surpass traditional 

statistical models for several productions and research 

questions. An artificial neural network, a type of predictive 

regression model, was found to predict daily milk yields more 

accurately than traditional regression models in one study of 

livestock production data (Grzesiak et al., 2006) [40]. Another 

study used a variety of classification algorithms, including 

naive Bayesian classification, decision trees, random forests, 

and logistic regression, to predict the outcomes of diseased 

feedlot cattle. When evaluating overall accuracy, the authors 

discovered that logistic regression was rarely the best model 

(Amrine et al., 2014) [8]. Classification algorithms differ in 

their methodology or techniques for minimizing variation in 

outcomes of interest, and a growing library of potential 

machine learning algorithms is available for testing. Some 

models are better suited to different results or data types. 

Unlike statistical modeling, where a single model is chosen 

before analysis, multiple models can be tested, and the best 

algorithm is determined based on classification accuracy. The 

predictive analytic process includes selecting a target variable, 

handling the data, partitioning the data, creating algorithms, 

refining algorithms, and at last comparing the accuracy of the 

created classifiers. Each step in the process is critical to 

ensuring that the outcomes are internally valid and provide 

the information needed to improve subsequent decision-

making Predictive analysis models use data, statistics, and 

machine learning techniques to improve farm effectiveness 

and drive successful outcomes in animal farming. 

The cycle of the predictive analytics process can be 

conceptualized in a variety of ways, here Figure 2 is a list of 

some simple steps that can help in understanding and 

developing a successful predictive analysis. The predictive 

analytic process can include various steps like defining the 

problem statement, collecting data, cleaning data, partitioning 

data, analyzing data, creating a predictive model, validating it, 

deploying it, and monitoring it. 

 
Table 2: How advanced algorithms can help animal farmers 

 

Trait of interest Parameter detected Algorithm used References 

Mastitis 

Milk electrical conductivity (EC), other 

like milk colour, somatic cell count, and 

milk yield 

Random Forest and Bayesian Network 
Dhoble et al., 2019; Ebrahimi et al., 

2019 [26, 28] 

Lameness 
Leg movement, Neck movement and 

Image/Video data 

Fog computing, Classification and 

regressive tree (CART) XGBoost algorithm 

Gertz et al., 2020; Taneja et al., 

2020; Warner et al., 2020 [35, 111, 118] 

African Swine Flu Mobility, speed, direction Optical flow algorithm Fernandez-Carrión et al., 2017 [132] 

Coccidiosis 
Volatile Organic Compounds (VOC) in 

air 
Principal Component Analysis (PCA) Borgonovo et al., 2020 [12] 

Postpartum disease 
Lactose yield, Protein production, Milk 

yield 
Random Forest Algorithm (RFA) Hidalgo et al., 2018 [48] 

Survival prediction Milk production, fertility, and health 
Ensemble method (logistic multiple 

regression, Naive Bayes and random forest) 
Van der Heide et al., 2020 [115] 

Nitrogen Excretion 

of Dairy Cattle 

Milk production, milk composition, feed 

intake, and feed composition 

Bayesian Network (BN) and Boosted 

regression trees (BRT) 
Mollenhorst et al., 2020 [74] 

Semen quality 

assessment in boar 
Fertility and ejaculation record Gradient Boosting Machine (GBM) models Kamphuis et al., 2020 [53] 

Growth rate and 

weight of pigs 
Growth rate and weight gain 

Ensemble methods: random forest, 

extremely randomized trees, gradient 

boosted machines and XGBoost 

Alsahaf et al., 2018 [6] 
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Fig 2: Basic work-flow of big data analytics 

 

Define the problem statement and data collection 

One of the first steps in the predictive analytic process is to 

identify the target variable, which is the outcome of the data 

to be estimated or predicted (Abbott, 2014) [1]. The target 

variable should be carefully chosen to provide information 

that will drive overall business decisions critical to the 

operation's financial sustainability. The structure of the 

predictive analytic problem and the appropriate model to be 

deployed is determined by the type of data describing the 

target variable. After selecting the target variable, the next 

step should be to clearly define the question to be answered. 

Narrowing the scope of a problem to an explicit hypothesis or 

question will inform the specific data required, limit the 

potential models, and define the level of accuracy that makes 

the model useful for decision-making (Abbott, 2014) [1]. A 

well-defined decision point will allow the model to focus on 

predicting a specific piece of information that can be used as a 

leverage point for operational decisions. 

 

Data cleaning/preprocessing 

Once the target variable has been determined, and basic data 

summarization has been used to evaluate the data structure, 

the data must be preprocessed. In general, the process entails 

assessing potential outliers, determining the level of missing 

data, and, if necessary, employing methods for evaluating 

collinearity among variables (crucial if using traditional 

methods like linear regression). Many machine learning 

algorithms handle missing data satisfactorily, which is one 

advantage of using these methods instead of conventional 

statistical methods when evaluating production data collected 

from livestock systems; however, large amounts of missing 

data can cause variables to become unreliable predictors, so 

missing data should be minimized if possible. Before 

beginning the modeling process, evaluate why the data are 

missing. This process is time-consuming, but it should be 

considered as should the most appropriate method to deal 

with the missing data (Abbott, 2014) [1]. Multicollinearity 

between two or more continuous variables can result in biased 

coefficient estimation and power loss (Yoo et al., 2014) [125]. 

When using traditional methods such as multiple linear 

regression, Multicollinearity can lead to significant issues and 

should be strictly evaluated prior to model building. However, 

when using predictive methods such as random forests, 

collinear variables can be kept in the data set because they 

may be used in different bootstrapped trees, and each 

collinear variable may provide helpful information (Hayes et 

al., 2015) [44]. 

 

Data partitioning 

Following the completion of the variables to be included in 

the model, the available data is divided into training and 

validation/testing data sets. Prior to model building, data must 

be partitioned into these data subsets in order to evaluate 

predictive model performance and ensure that the model can 

be reasonably applied to new datasets. The first data subset is 

training data, which comprises approximately (80 percent). It 

is used to generate the initial models, and the training data 

subset may differ from the native data in terms of the 

frequency of occurrence of the outcome. It's time to put the 

model to the test after we've trained it with the training 

dataset. This dataset is used to assess the model's performance 

and ensure that it can generalise well to new or unfamiliar 

datasets. The test dataset is a subset of the original data that is 

distinct from the training dataset. It does, however, have some 

features and class probability distributions in common, and it 

is used as a benchmark for model evaluation once model 
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training is complete. Test data is a well-organized dataset that 

contains data for each type of scenario for a given problem 

that the model would encounter if used in the real world. An 

ML project's test dataset is typically 20-25 percent of the total 

original data. The testing data should be representative of or a 

subset of the original dataset, and it should be large enough to 

provide meaningful predictions. There are no specific rules 

for the amount of data to partition into training, revising, and 

validation/testing datasets, but authors have successfully used 

partitions of 50% training, 25% revising, and 25% 

validation/test (Abell et al., 2017) [2] and 40% training, 30% 

revising, and 30% validation/test (Abell et al., 2017) [2]. 

(Amrine et al., 2014) [8]. The splits size is determined by the 

availability of data and the frequency with which outcomes 

occur, but the data have to be partitioned before the start of 

the predictive analytic process to avoid potential bias in the 

final predictive assessment. 

 

Model building 

Numerous types of predictive models are available to classify 

data or generate predictive outcomes based on a given data 

set. Big data contains many variables, many of which have 

complex interactions and relationships with the desired result; 

thus, a predefined model selection based on the target variable 

is frequently impossible. By evaluating the performance of 

multiple models, the evaluation does not assume that data will 

conform to a specific form, and the optimal model is 

determined by final accuracy evaluation rather than 

preconceived notions. The predictive analytic framework 

provides the environment for testing and evaluating multiple 

classifying algorithms to determine the best fit (in terms of 

accuracy) for a specific situation and target variable. 

Classification methods differ in their ability to handle missing 

data, deal with different attribute types (continuous or 

categorical), overall generalizability, and ability to provide a 

clear explanation for why a specific prediction was made. The 

target variable type should guide the particular algorithm 

chosen and the level of prediction accuracy required. A 

simple classification model is often an excellent place to start 

(e.g., a logistic regression model). The decision tree is another 

good initial model framework because of its ease of 

understanding and deployment in popular SQL-based 

database systems (Abbott, 2014) [1]. Both regression and 

classification problems can be solved using the decision tree 

framework. Compared to single-model methods, ensemble 

methods combine the results of multiple models to provide a 

more accurate predictive model. Random forests are a popular 

ensemble model that often outperforms single trees in terms 

of accuracy. 

Multiple trees are generally constructed to predict the same 

target variable using different combinations of predictors and 

data set subsets. Using multiple methods, these various 

models are combined to determine the final expected 

outcome. The k-nearest neighbor (k-nn) method is one of the 

simplest models for predicting continuous outcomes. This 

model is easily described when using continuous variables to 

predict another continuous variable. The "k" in k-nn 

represents the number of animals used after calculating the 

distance. The more neighbors used to generate a prediction, 

the smoother the prediction; however, no theory specifies the 

number of neighbors to use (Abbott, 2014) [1]. Although the k-

nn method is not as sophisticated as the other methods 

discussed, it can provide reasonably accurate results with 

minimal processing and is easily interpretable depending on 

the available target variable and predictor variables. 

 

Building predictive model 

Following the preprocessing steps, the next step is to train 

predictive models. Individual algorithms are given the 

required parameters, the target variable is specified, and the 

model is trained using the partitioned training data subset. R 

(R Core Team, http://www.R-project.org/, Vienna, Austria), 

Knime (Knime Analytics Platform, https://www.knime.com, 

Zurich Switzerland), and Rapid Miner (Rapidminer Inc, 

https://rapidminer.com, Boston, MA) all have packages or 

nodes that provide different models that can be evaluated for 

classification problems. By using the training data subset, a 

predictive model is created and used to classify the revising 

data after model generation. The preliminary results are 

evaluated by evaluating how well the revising data were 

classified. An iterative process follows, allowing for model 

adjustments, predicting results from the revised data subset, 

and evaluating results. Model modifications during this 

process may include decision tree pruning, variable inclusion 

or exclusion, changing the number of iterations in a Bayesian 

approach, or other model configuration settings that may 

affect final classification accuracy. Classification errors (false 

positives/false negatives) are frequently not equally weighted 

in terms of the level of concern. This revision process can 

help ensure classification errors are distributed in a way that is 

consistent with the overall project objectives. This process 

can be repeated several times, allowing the model to be 

optimized for the revised data subset. This framework can be 

used to evaluate additional classes of classification models. A 

logistic regression, a single decision tree, and a random forest, 

for example, could all be considered for their ability to 

classify a response. Following the tuning process for each 

type of model, the validation/testing data subset would be 

used with each model, and the chosen metric (i.e., overall 

accuracy, sensitivity, specificity) would be compared among 

the models to determine the best predictive model. Model 

interpretability, run time, and ease of deployment based on 

the expected use case are also considered in the final model 

selection process. 

 

Validation 

It is not enough to develop a machine learning model and rely 

on its predictions; you must also check and validate the 

model's accuracy to ensure the precision of the model's results 

and make it usable in real-world applications. Choosing the 

appropriate validation method is also critical to ensuring the 

accuracy and biases of the validation process. For example, 

validation may not be required if the data volume is large 

enough to represent the entire population. However, the 

situation is different in the real world because the sample or 

training data sets we are working on may not accurately 

portray the population. Validation checks for data anomalies, 

ensure that the data schema hasn't changed, and ensures that 

the statistics of our new datasets still match those of our 

previous training datasets. 

 

Deployment and model monitoring 
Model deployment simply means integrating a machine 

learning model and integrating it into an existing production 

environment (1) where it can take in an input and return an 

output. The goal of deploying your model is to make 

predictions from a trained ML model available to others, such 

as users, management, or other systems. Model deployment is 
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closely related to the architecture of ML systems, which refers 

to the arrangement and interactions of software components 

within a system to achieve a predefined goal (Opeyemi et al., 

2019) [79]. Your machine learning model must meet a couple 

of criteria before it is ready for deployment. 1) Portability: 

This refers to your software's ability to be transferred from 

one machine or system to another. A portable model has a low 

response time and can be rewritten with little effort. 2) 

Scalability: the ability of your model to scale in size. A 

scalable model is one that does not require redesigning to 

maintain its performance. Model monitoring is done after 

deployment. It is a set of techniques for observing ML models 

in production and ensuring their performance reliability. 

Machine learning model monitoring aims to continuously 

assess the quality of machine learning models in production 

using data science and statistical techniques. Monitoring can 

be used for various purposes, such as detecting instabilities 

early, understanding how and why model performance 

degrades, and diagnosing specific failure cases. 

 

Current Challenges in high throughput phenotyping and 

big data analytics 

Currently, commercial sensors for reliable prediction and 

disease management in livestock farming via continuous 

automated real-time monitoring are severely limited. For 

example, there are no sensors available to measure 

biomarkers from cows' and pigs' breathing spaces, which 

could indicate the gut microbiota or even the animals' 

metabolic states. This gap necessitates the development of 

sensors and biosensing tools that use "omics" and non-omics 

approaches to measure biomarkers, miRNAs, and other 

volatile metabolites, among other things. There are also 

specific technical challenges, such as where the sensor will be 

placed, the sampling rate, and how the data will be 

transmitted. All of these factors influence the accuracy of the 

algorithms, as well as the scalability and practicability of the 

solution, which could thus be used on the animal farm. 

Evaluating sensor position, sampling frequency, sensor data 

analysis, and window size for data processing would 

significantly improve farm animal behavior prediction. 

 

Choosing Machine Learning Algorithms for Data Analysis  

What and how many types of ML features are required, and 

which algorithms are thus best to tackle the classification 

problem are decisions that can determine the desired outcome 

of the animal welfare evaluation. For example, from a set of 

44 features, only five to seven may be required to produce 

highly accurate results. As a result, large feature sets in real-

time systems may be problematic due to computational 

complexity and increased storage requirements. Aside from 

energy concerns, one of the most significant technical 

challenges for real-time and long-term farm animal behavior 

monitoring is "concept drifts." Concept drift occurs when a 

sensor platform and data analysis system are required to adapt 

to a change in data distributions within a concept. It is 

commonly assumed in supervised classification problems that 

the data in the design model is drawn randomly from the same 

distribution as the points to be classified in the future. 

Because of the dynamic nature of many different 

classification problems, this is an unrealistic assumption. For 

example, when a system is trained in a single environment, 

the behavioral classification of animals can show performance 

discrepancies due to environment variance heterogeneity. 

Such disparities can be attributed to animal differences (age, 

breed, etc.) and environmental factors (change in weather 

conditions, terrain elevation, type of soil, particular farm 

constraints, etc.). 

 

Data Sharing 

Defined challenges of big data in livestock include how to 

share data across institutes and private entities, as well as how 

to standardize data recording, management, quality control, 

trait terminology, and data processing. Innovative approaches 

will be required to distinguish information from noise in data, 

develop accurate prediction models, and integrate information 

from disparate sources and locations. 

 

In Search of More Complex and Better Results 

We are now in the era of sensors, big data, and machine 

learning. These advanced technologies are expected to drive 

improved efficiencies and more significant gains in animal 

farming over the next decade. It will also reduce human 

errors. As a result, productivity, farmer profits, and animal 

well-being will improve. More importantly, it has the 

potential to go beyond improved profits and productivity by 

assisting us in achieving better animal well-being outcomes. It 

could also aid in developing more holistic, humane, and 

environmentally friendly practices. 

 

Conclusion 

In summary, agricultural HTP technology has the potential to 

solve the breeder's equation for maximum genetic gain by 

increasing the intensity and precision of selection, improving 

genetic variation detection, and shortening breeding cycles. 

The emergence of Agriculture 4.0 is accelerating the adoption 

of sensing technologies, big data, and machine learning in 

modern animal farming. Real-time 24/7 insights into livestock 

activity, consumption, and production are required in 

pandemic scenarios where restrictions make it difficult for 

veterinarians, nutritionists, and producers to visit farms, 

barns, and feed mills. These findings enabled by sensing 

technologies generate data that can be accessed remotely, 

resulting in lower costs and improved performance in 

responding to consumer demands. Despite the rapid 

development of AI and machine learning algorithms, there is 

a global lack of standardization in data collection and sharing. 

Defined challenges of big data in livestock include sharing 

data across institutes and private entities, standardizing data 

recording, management, QC, trait terminology, and data 

processing. Innovative approaches will be required to 

distinguish information in data from noise, develop accurate 

prediction models, and integrate information from disparate 

sources and locations. Opportunities to use crowdsourcing, 

machine learning-based artificial intelligence, and other 

innovative data transfer and storage methods will be critical 

for extracting knowledge from livestock data. Many data sets, 

such as those generated in the dairy industry during milk 

testing are already ready for use. Data utilization, reuse, and 

generation have enormous potential to improve livestock 

efficiency, welfare, and societal benefit. Deep phenotyping 

can benefit society greatly by providing detailed basic 

physiological knowledge that cannot be measured on humans 

or model organisms regularly. Training people to work with 

big data will offer enormous opportunities for academia and 

private industry to develop knowledge and tools to feed a 

growing world sustainably. 
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