The Pharma Innovation

ISSN (E): 2277-7695
ISSN (P): 2349-8242
NAAS Rating: $\mathbf{5 . 2 3}$
TPI 2022; 11(9): 126-130
(C) 2022 TPI
www.thepharmajournal.com
Received: 02-06-2022
Accepted: 10-08-2022
Priyanka Kumari
Ph.D. Research Scholar, Department of Plant Breeding and Genetics, Birsa Agricultural University, Ranchi, Jharkhand, India

Manigopa Chakraborty
Chief Scientist, Department of Plant Breeding and Genetics,
Birsa Agricultural University,
Ranchi, Jharkhand, India

Sudhir Kumar
Scientist, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India

SB Chaudhary

Scientist, National Bureau of
Plant Genetic Resources,
Ranchi, Jharkhand, India
Krishna Prasad
Assistant Professor, Department of Plant Breeding and Genetics, Birsa Agricultural University,
Ranchi, Jharkhand, India
Rameshwar Prasad Sah
Scientist, Department of Genetics and Plant Breeding, Central Rice Research Institute, Cuttack, Odisha, India

Corresponding Author:
Priyanka Kumari
Ph.D. Research Scholar, Department of Plant Breeding and Genetics, Birsa Agricultural University, Ranchi, Jharkhand, India

Identification of maize (Zea mays L.) inbreds by using agro-morphometric traits

Priyanka Kumari, Manigopa Chakraborty, Sudhir Kumar, SB Chaudhary, Krishna Prasad and Rameshwar Prasad Sah

Abstract

Morphological characterization of forty fivemaize (Zea Mays L.) inbreds which is procured from BAU Maize project, Ranchi and NBPGR, Ranchi was carried out using DUS characters. Field experiments were conducted to study the experimental materials for tolerance to moisture stress i.e. excessive and normal moistures condition at Research Farm at different locations of BAU, Kanke, Ranchi during, rabi 2019-20, Geographically, the area is located between $23^{\circ} 17^{\prime} \mathrm{N}$ latitude and $85^{\circ} 19^{\prime} \mathrm{E}$ longitude at an altitude of 625 m above mean sea level. The study was conducted at Visual observations were recorded on single plant basis on five randomly selected plants in each inbreds at appropriate growth stages as per descriptor of IIMR, Ludhiana. Data on Leaf angle between blade and stem, Leaf attitude of blade, Leaf Width blade (leaf of upper ear), Leaf color, Leaf orientation, stem: Anthocyanin colour of brace roots, Anthocyanin coloration of anther, Anthocyanin colouration excluding glumes, Anthocyanin colouration at base of glumes, Density of anthers, Tassel angle, Tassel length, Shape of cob, kernel row arrangement were recorded on five randomly selected plant sin each plot under both the condition under normal condition and under moisture stress condition. All the qualitative traits were recorded as per the standard procedures.

Keywords: Maize (Zea mays L.), characterization, DUS rate, national bureau of plant genetics resources NBPGR

Introduction

Maize $(2 n=20)$ is one of the most important cereal crops in the world, providing a staple food, and being used as source of income for many populations in developing countries including India. Characterization of morphological variability allows breeders to identify accessions with desirable characteristics such as earliness, improved ear morphology etc and avoid duplication of accessions in germplasm collection. Traditionally, numerous morphological traits have been used to describe inbred lines and hybrid cultivars of Maize (Zea mays L.). Protection of Plant varieties and Farmers Right authority insists on characterization and registration of extant, farmers and new as a part of national and botanical asset. Pinnisch et al., (2012) ${ }^{[5]}$ also indicated that, inbred lines serve as the seed parent to estimate the profitability of commercial maize genotypes.
DUS Testing is one of the important criteria to test inbred lines for distinctness, uniformity and stability. DUS Testing of cultivars is one of the requirements for granting Plant Breeders Rights (PBR) and it is conducted according to national guidelines prepared on the basis of UPOV (International Union for the Protection of New Varieties of Plants) guidelines. The system accepted and in operation in a large number of countries is as provided by (International Union for the Protection of New Varieties of Plants) UPOV. Information is, thus, generated on the basis of internationally accepted and followed norms, thereby providing a basis for appropriate comparison of materials identified under the national agricultural research system (NARS) alongside materials from other sources. Morpho-agronomical characters have been used to study the genetic diversity in maize (Beyene et al., 2005) ${ }^{[2]}$. The traits used in assessing crop variety for DUS have been carefully selected taking into account the plastic-ity of morphological characteristics and thus the efficient for comparing varieties. However the characterization of germplasms provides a baseline information regarding the morphological and agronomic traits (Ngwadla, X. 2002) ${ }^{[1]}$. Hence studies were initiated to develop parental characteristics as per the guidelines of PPV and FRA for the domestic inbreds of Birsa Agricultural University (BAU) and the inbred of National Bureau of Plant Genetics Resources (NBPGR) which will help in selection of inbreds for specific breeding program.

Materials and Methods

The seeds of forty five (Table $1 \& 2$) maize inbred lines were sown at Birsa Agricultural university Experimental field in randomised block design with two replications per variety with a row to row and plant to plant distance of 60 cm and 20 cm in two condition one is under irrigated condition another is
on the non-irrigated condition respectively. As the main goal was a practical characterisation of maize inbreds a set of fourteen descriptors (Table 1) were used. Data for morphological traits were collected on randomly selected plants per replication.

Table 1: The seeds of Maize (Zea Mays) accession procured from NBPGR (National Bureau of Plant Genetic Resources) Ranchi

S. No.	Collector No.	I.C. NO.	S. No.	Collector No.	I.C NO.
1.	SKB/PM-5	IC624140	9.	SKB/PM-17	IC624151
2.	SKB/PM-6	IC624141	10.	SKB/PM-19	IC624153
3.	SKB/PM-7	IC624142	11.	SKB/PM-21	IC624154
4.	SKB/PM-10	IC624145	12.	SKB/PM-28	IC624157
5.	SKB/PM-11	IC624146	13.	SKB/PM-31	IC624158
6.	SKB/PM-12	IC624147	14.	SKB/PM-35	IC624159
7.	SKB/PM-14	IC624148	15.	SKB/PM-36	IC624160
8.	SKB/PM-16	IC624150	16.	SKB/PM-39	IC624161
17.	SKB/PM-46	IC624164	24.	SKB/PM-73	IC624175
18.	SKB/PM-47	IC624165	25.	SKB/PM-75	IC624176
19.	SKB/PM-48	IC624166	26.	SKB/PM-76	IC624177
20.	SKB/PM-56	IC624169	27.	SKB/PM-77	IC624178
21.	SKB/PM-58	IC624170	28.	SKB/PM-78	IC624179
22.	SKB/PM-66	IC624173	29.	SKB/PM-79	IC624180
23.	SKB/PM-71	IC624174	30.	SKB/PM-83	IC624181

Table 2: The seeds of the Maize (Zea Mays) inbred line procured from the Maize Research Scheme of Plant Breeding and Genetics department of BAU Kanke, Ranchi

S. No.	Inbred lines	Accession number	S. No.	Inbred lines	Accession number
1.	96 Rohyo	BAUIM-1	9.	HKI-193-1	IC470149
2.	Suwan	BAUIM-2	10.	HKI-1532	IC563958
3.	55Dholi	BAUIM-3	11.	HKI-335	IC405279
4.	B1105TE	BAUIM-4	12.	P1M1PV1	IC622967
5.	95IOWA	BAUIM-5	13.	P1M1PV2	IC622968
6.	BQPM-2	IC45673	14.	LM13	IC527290
7.	CM425	IC67543	15.	LM14	IC527291
8.	CML169	IC643215			

Table 3: DUS traits and the state of expression which were recorded are as presented in the below

SI. No.	Name of the traits	States	scale	Stage of observation	Type of assessment
1.	Leaf angle between blade and stem	Small Wide Medium	$\begin{aligned} & \hline 3 \\ & 7 \\ & 5 \\ & \hline \end{aligned}$	61 DAS	VG
2.	Leaf attitude of blade	Straight Drooping Strongly curved	$\begin{aligned} & \hline 1 \\ & 9 \\ & 3 \end{aligned}$	61 DAS	VG
3.	Leaf Width blade (leaf of upper ear)	Narrow ($<8 \mathrm{~cm}$) Medium ($8-9 \mathrm{~cm}$) Broad (> 9 cm)	$\begin{aligned} & 3 \\ & 5 \\ & 7 \\ & \hline \end{aligned}$	75 DAS	MS
4.	Leaf color	Light green Green Dark green	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	61 DAS	VG
5.	Leaf orientation	Present Absent	$\begin{aligned} & \hline 1 \\ & 2 \end{aligned}$	61 DAS	VG
6.	Stem: Anthocyanin colour of brace roots	Absent Present	$\begin{aligned} & 9 \\ & 1 \end{aligned}$	75 DAS	VG
7.	Anthocyanin coloration of anther	Absent Present	9	75 DAS	VG
8.	Anthocyanin colouration excluding glumes	Absent Present	9	75 DAS	VG
9.	Anthocyanin colouration at base of glumes	Absent Present	9	75 DAS	VG
10.	Density	Dense Sparse	$\begin{aligned} & \hline 7 \\ & 3 \\ & \hline \end{aligned}$	75 DAS	VG
11.	Tassel angle	Narrow Wide	$\begin{aligned} & 3 \\ & 7 \\ & \hline \end{aligned}$	75 DAS	VG
12.	Tassel length	Short	3	75 DAS	VG

		Medium Long	5 7		
13.	Shape of cob	Conical Conic cylindrical Cylindrical	1 2 3	75 DAS	VG
14	Kernel row arrangement (middle of ear)	Straight spiral irregular	1 2 3	75 DAS	VG

Result and Discussion

The state of expressions and frequency distribution of these
forty five Maize (Zea Mays L.) Inbreds for various DUS characters is given below in Table 4.

Table 4: The state of expressions and frequency distribution of these forty five Maize (Zea Mays L.) Inbreds for various DUS characters

$\begin{array}{\|l} \text { SI. } \\ \text { No. } \end{array}$	Name of the traits	States of expression	Number of inbreds		Frequency distribution under irrigated condition (\%)	Frequency distribution under non-irrigated condition (\%)
			Irrigated	Nonirrigated		
1.	Leaf angle between blade and stem	Small	25	33	55.55	72.12
		Wide	11	10	24.45	23.44
		Medium	9	2	20	4.44
2.	Leaf attitude of blade	Straight	27	24	60	53.33
		Drooping	12	20	27.57	44.44
		Very strongly curved	6	1	13.33	2.23
3.	Leaf Width blade (leaf of upper ear)	Narrow ($<8 \mathrm{~cm}$)	9	22	20	48.88
		Medium($8-9 \mathrm{~cm}$)	12	8	26.66	17.77
		Broad (>9cm)	24	14	53.34	31.12
		wide		1		2.24
4.	Leaf color	Light green	11	8	24.45	17.78
		Green	24	28	53.34	62.22
		Dark green	10	9	22.21	20
5.	Leaf orientation	Present	27	32	60	71.12
		Absent	18	13	40	28.88
6.	Stem: Anthocyanin colour of brace roots	Absent	14	35	31.12	77.78
		Present	31	10	68.88	22.22
7.	Anthocyanin coloration of anther	Absent	34	32	75.55	71.12
		Present	11	13	24.45	28.88
8.	Anthocyanin colouration excluding glumes	Absent	33	34	73.33	75.55
		Present	12	11	26.67	24.45
9.	Anthocyanin colouration at base of glumes	Absent	28	12	62.22	26.66
		Present	17	33	37.78	73.34
10.	Density of anthers	Dense	31	14	68.88	31.12
		Sparse	14	31	31.12	68.88
11.	Tassel angle	Narrow	28	30	62.22	66.66
		Wide	17	15	37.78	33.34
12.	Tassel length	Short	10	30	22.22	66.66
		Medium	29	10	64.44	22.22
		Long	6	5	13.34	11.12
13.	Shape of cob	Conical	18	16	40	35.55
		Conicocylindrical	6	8	13.34	17.78
		cyliderical	21	21	46.66	46.66
14	Kernel row arrangement	straight	13	13	28.88	28.88
		spiral	15	14	33.33	31.12
		irregular	17	18	37.79	40

A wide spectrum of variation was found in the frequency distribution of inbreds for various characters under normal and drought condition. For leaf characters angle between blade and stem under irrigated condition and non-irrigated condition maximum frequency of (55.55%) and (72.22%) as found for "small" state of expression while minimum frequency (4.44) found for "medium" state of expression under non-irrigated condition. Maximum percentage of inbreds (60%) and (53.33%) was found to be "Straight" for leaf attitude of blade under irrigated condition and nonirrigated condition while minimum frequency (2.23) found for "very strongly curved" state of expression under non-irrigated condition. For leaf width blade maximum frequency (53.33\%)
found for "broad" state of expression under irrigated condition while in non-irrigated condition maximum frequency (48.88%) found for "narrow" state of expression. For leaf color maximum frequency (60%) found for "green" state of expression under non-irrigated condition while under irrigated condition maximum frequency (53.34%) found for "green" state of expression. For leaf orientation maximum frequency (71.12%) found for "present" state of expression under non-irrigated condition. For stem: Anthocyanincolour of brace roots maximum frequency (77.78%) found for "absent" state of expression under non-irrigated condition while in irrigated condition maximum frequency (68.888%) found for "present" state of expression. For anther traits like

Anthocyanin colouration excluding glumes maximum frequency (77.78%) found for "absent" state of expression under non-irrigated condition while in irrigated condition maximum frequency (68.888\%) found for "present" state of expression. Anthocyanin colouration at base of glumes maximum frequency (73.34%) found for "present" state of expression under non-irrigated condition while under irrigated condition maximum frequency (62.22%) found for "absent" state of expression. For density of anthers maximum frequency (68.88%) found for "dense" state of expression under irrigated condition while under irrigated condition same frequency (68.888%) found for "sparse" state of expression. For tassel angle maximum frequency (66.66%) found for "narrow" state of expression under non-irrigated condition while under irrigated condition maximum frequency (62.22%) found for "narrow" state of expression. For tassel length maximum frequency (66.66%) found for "short" state of expression under non-irrigated condition while under irrigated condition maximum frequency (64.44%) found for "medium" state of expression. For shape of cob maximum frequency (46.66%) found for "cylinderical" state of expression under non-irrigated condition while under irrigated condition maximum frequency (46.66%) found for same that is "cylinderical" state of expression. For kernel row arrangement there is found slight variation between under irrigated and non-irrigated condition equal frequency found for "straight" state of expression while maximum frequency found (40\%) and (37.79%) for irregular state of expression under nonirrigated condition and irrigated condition.

Images of qualitative traits are given

Tassel volume: Sparse (A) and Dense (B)

(C) Stem: Anthocyanin colour of brace roots- Absent

(D) Anthocyanin coloration - Absent

(E) Anthocyanin coloration- Present

(F) Stem: Anthocyanin colour of brace roots- Absent

(G) Width of leaf

(H) Irregular kernel row arrangement

(I) Straight kernel row arrangement and conical shape of cob
(J) Irregular kernel row arrangement
(K) Spiral kernel row arrangement

References

1. Ngwadla X. Characterization of maize and cucurbit land races of the Transkei region of the Eastern Cape. M. Sc. thesis submitted for examination. University of Fort Hare, Alice, South Africa; c2002.
2. Beyene Y, Botha AM, Myburg AA. A comparative study of molecular and morphological method of describing genetic relationships in traditional Ethiopian highland maize. - African Journal of Biotechnology. 2005;4:586595.
3. Abu-Alrub I, Christiansen JL, Madsen S, Sevilla R, Ortiz R. Assessing tassel, kernel and ear variation in Peruvian highland maize. Plant Gen. Res. Newslet. 2006;137:3441.
4. Anon. Guidelines for the conduct of tests for distinctness, uniformity and stability on maize (Zea mays). The Protection of Plant Varieties and Farmers' Rights authority, New Delhi. Plant Variety J India. 2007;1(1):113.
5. Pinnisch R, Mowers R, Trumpy H, Walejko R, Bush D. Evaluation of maize (Zea mays L) inbred lines for yield component traits and kernel morphology. Maydica. 2012;57:1-5.
