Prevalence of periparturient disorders during transition period in buffaloes

VK Meena, Suman Meena, SK Sharma, LK Chandolia, Monika Jhoshi, Mitesh Gaur, RK Khinchi and HK Jediya

Abstract
The transition period from 3 weeks prepartum to 3 weeks postpartum, is the most stressful phase for buffaloes. A total of 65 transition buffaloes were included in present study. Out of which 53.85 per cent (35/65) transition buffaloes were found affected with periparturient disorders. Out of these 35 affected buffaloes, 20.00 per cent had multiple periparturient disorders whereas remaining 80.00 per cent had single periparturient disorder. Among the different periparturient disorders, sub-clinical hypocalcaemia (SCH) was found as the most prevalent periparturient disorder accounting for 12.31 per cent cases followed by sub-clinical mastitis (9.23 per cent); dystocia (7.69 per cent); milk fever (6.15 per cent); mastitis, post-parturient metritis and torsion (4.61 per cent each); post-parturient indigestion, lameness and uterine prolapse (3.08 per cent each); and post-parturient haemoglobinuria, retention of placenta and traumatic reticulo-peritonitis (1.54 per cent each).

Keywords: Periparturient disorders, transition period, buffaloes

Introduction
Transition period (from 3 weeks prepartum to 3 weeks postpartum) is one of the most critical periods during life of dairy animals. Transition period is especially critical for health and subsequent performance of dairy animals (Castillo et al., 2005) [5]. Dairy animals are more susceptible to a variety of metabolic and infectious diseases during the transition period (Sordillo et al., 2007; Sharma et al., 2011) [65, 41]. The transition from non-lactating to lactating status imposes enormous stress on dairy animals which may impair the herd health and is associated with the incidence of several diseases which may be metabolic, nutritional and infectious in nature (Šrinivas Naidu, 2015; Van Saun, 2016; Weber et al., 2016) [47, 54, 56]. During transition period, dairy animals are under many physiological and biochemical challenges including metabolic and endocrine changes, environmental and managemental stressors (Sepulveda-Varas et al., 2013) [38] as nutritional and physical adaptation to lactation (Ingvartsen and Moyes, 2013; Roche et al., 2013) [11, 35], immunosuppression (Sordillo and Atiken, 2009; Piccione et al., 2012) [44, 28] and increased mucosal exposure to immunogenic compounds, namely endotoxins (Dosogne et al., 2002; Mateus et al., 2003; Emmanuel et al., 2007) [17, 24, 8].

Dairy animals are at higher risk for many diseases and disorders during periparturient period. Dairy animals experience a marked metabolic load due to the prevailing negative energy balance, which makes them susceptible toward infectious and metabolic diseases. The most common diseases associated with transition period include metabolic disorders (fatty liver, ketosis, milk fever, downer cow syndrome etc.), infectious diseases (mastitis, endometritis and metritis), reproductive disorders (retained placenta, uterine prolapse, dystocia), respiratory problems (dyspnoea), digestive disorders (ruminal acidosis, subclinical acidosis, displaced abomasum, sub-acute ruminal acidosis), locomotive abnormalities (lameness, laminitis) and digital dermatitis (LeBlanc, 2010; Suthar et al., 2013; Singh et al., 2020) [18, 50, 42]. Periparturient diseases are interconnected and it is difficult to identify as a single entity. Dairy animals that develop clinical hypocalcaemia are eight, five and nine times more likely to develop mastitis, retained placenta and downer cow syndrome, respectively (Abouom et al., 2012) [1]. Similarly, animals with subclinical ketosis are eight times more likely to develop left displaced abomasum (LeBlanc et al., 2005) [19]. Cows with subclinical ketosis had 1.5, 9.5 and 5.0 times greater odds of developing metritis, clinical ketosis and displaced abomasum, respectively (Suthar et al., 2013) [50].
The occurrence of displaced abomasum, ketosis, retained placenta and metritis was 3.7, 5.5, 3.4 and 4.3 times more likely, respectively, in cows that had subclinical hypocalcaemia (SCHC) than cows with normal level of calcium (Rodriguez et al., 2017) \[36\].

Materials and Methods

The present investigation was carried out on 65 transition buffaloes in Udaipur district of Rajasthan. Complete history including breed, age, parity, general behaviour, health status, body condition, housing and managerial practices, history of previous illness if any, and any other relevant information were collected. The date of service (natural/artificial insemination), date of pregnancy diagnosis and expected date of calving was recorded for each buffalo. All the transition buffaloes were subjected to detailed clinical examination followed by blood collection for estimation of routine haemato-biochemical parameters and mineral status.

Results and Discussion

In present study, out of 65 transition buffaloes, 53.85 per cent (35/65) were found affected with periparturient disorders. Out of these 35 affected buffaloes, 20.00 per cent (7/35) had multiple disorders whereas remaining 80.00 per cent (28/35) had single disorder. In multiple disorders, combinations of three types of disorders were found. The disorders diagnosed as single disorder in transition buffaloes included post-parturient indigestion (PPI), mastitis, per-parturient haemoglobinuria (PPH), traumatic reticulo-peritonitis (TRP), torsion, uterine prolapse and retention of placenta (ROP) whereas, periparturient disorders which were seen in multiple forms included milk fever and sub-clinical mastitis (SCM); post-parturient metritis (PPM) and lameness; and sub-clinical hypocalcaemia and dystocia.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Periparturient disorder</th>
<th>No. of affected buffaloes</th>
<th>Per cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sub-clinical mastitis (SCM)</td>
<td>4</td>
<td>6.15</td>
</tr>
<tr>
<td>2.</td>
<td>Post-parturient Indigestion (PPI)</td>
<td>2</td>
<td>3.08</td>
</tr>
<tr>
<td>3.</td>
<td>Sub-clinical hypocalcaemia (SCH)</td>
<td>5</td>
<td>7.69</td>
</tr>
<tr>
<td>4.</td>
<td>Lameness</td>
<td>1</td>
<td>1.54</td>
</tr>
<tr>
<td>5.</td>
<td>Mastitis</td>
<td>3</td>
<td>4.61</td>
</tr>
<tr>
<td>6.</td>
<td>Post-parturient metritis (PPM)</td>
<td>2</td>
<td>3.08</td>
</tr>
<tr>
<td>7.</td>
<td>Milk fever (MF)</td>
<td>2</td>
<td>3.08</td>
</tr>
<tr>
<td>8.</td>
<td>Post-parturient Haemoglobinuria (PPH)</td>
<td>1</td>
<td>1.54</td>
</tr>
<tr>
<td>9.</td>
<td>Torsion</td>
<td>3</td>
<td>4.61</td>
</tr>
<tr>
<td>10.</td>
<td>Dystocia</td>
<td>2</td>
<td>3.08</td>
</tr>
<tr>
<td>11.</td>
<td>Uterine Prolapse</td>
<td>2</td>
<td>3.08</td>
</tr>
<tr>
<td>12.</td>
<td>Retention of placenta (ROP)</td>
<td>1</td>
<td>1.54</td>
</tr>
<tr>
<td>13.</td>
<td>Traumatic Reticulo-peritonitis (TRP)</td>
<td>1</td>
<td>1.54</td>
</tr>
</tbody>
</table>

The Pharma Innovation Journal

Table 1: Animal wise prevalence of various periparturient disorders in buffaloes

LeBlanc (2010) \[18\] reported that one-third of dairy cows were affected by some form of metabolic or infectious disease in early lactation. Serrenho et al. (2021) \[40\] reported that up to 50 per cent of dairy cows suffer from atleast one disease event in the transition period. Macmillan et al. (2021) \[21\] reported that overall 61 per cent of Holstein dairy cows were diagnosed with atleast one postpartum health disorder, with 25 per cent of cows having multiple disorders during early postpartum (2 wks).

Ribeiro et al. (2013) \[32\] reported that overall, 37.5 per cent of the periparturient multiparous dairy cows presented atleast one clinical disease and 59.0 per cent had atleast one subclinical health problem. Sepulveda-Varas et al. (2015) \[39\] reported that overall, 56 per cent of the Holstein dairy cows studied developed atleast one clinical or subclinical disease after calving. Caixeta and Omontese (2021) \[4\] reported that approximately one third of dairy cows having atleast one clinical disease (metabolic and/or infectious) and more than half of the cows having atleast one subclinical case of disease during early lactation.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name of Periparturient disorder</th>
<th>No. of buffaloes affected</th>
<th>Per cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sub-clinical mastitis (SCM)</td>
<td>6</td>
<td>9.23</td>
</tr>
<tr>
<td>2.</td>
<td>Post-parturient Indigestion (PPI)</td>
<td>2</td>
<td>3.08</td>
</tr>
<tr>
<td>3.</td>
<td>Sub-clinical hypocalcaemia (SCH)</td>
<td>8</td>
<td>12.31</td>
</tr>
<tr>
<td>4.</td>
<td>Lameness</td>
<td>2</td>
<td>3.08</td>
</tr>
<tr>
<td>5.</td>
<td>Mastitis</td>
<td>3</td>
<td>4.61</td>
</tr>
<tr>
<td>6.</td>
<td>Post-parturient metritis (PPM)</td>
<td>3</td>
<td>4.61</td>
</tr>
<tr>
<td>7.</td>
<td>Milk fever (MF)</td>
<td>4</td>
<td>6.15</td>
</tr>
<tr>
<td>8.</td>
<td>Post-parturient haemoglobinuria (PPH)</td>
<td>1</td>
<td>1.54</td>
</tr>
<tr>
<td>9.</td>
<td>Torsion</td>
<td>3</td>
<td>4.61</td>
</tr>
<tr>
<td>10.</td>
<td>Dystocia</td>
<td>5</td>
<td>7.69</td>
</tr>
<tr>
<td>11.</td>
<td>Uterine prolapse</td>
<td>2</td>
<td>3.08</td>
</tr>
<tr>
<td>12.</td>
<td>Retention of placenta (ROP)</td>
<td>1</td>
<td>1.54</td>
</tr>
<tr>
<td>13.</td>
<td>Traumatic Reticulo-peritonitis (TRP)</td>
<td>1</td>
<td>1.54</td>
</tr>
</tbody>
</table>

Table 2: Total various individual periparturient disorders in buffaloes

~ 408 ~
In present investigation, subclinical hypocalcaemia was the most prevalent (12.31 per cent) periparturient disorder. Ribeiro et al. (2013) [32], Krishna et al. (2014) [15], Sepulveda-Varas et al. (2015) [39] and Tsiamadis et al. (2021) [51] have also reported higher prevalence of subclinical hypocalcaemia in dairy animals while Sundrum (2015) [49] reported lower prevalence of sub-clinical hypocalcaemia (2.2 per cent). Ruprechter et al. (2018) [37] found that incidence of subclinical hypocalcaemia was greater in multiparous than primiparous dairy cows (43 v/s 9.5 per cent) respectively from -3 to +4 weeks relative to calving. Macmillan et al. (2021) [21] reported the prevalence of subclinical hypocalcaemia in primiparous and multiparous dairy animals 17.1 and 23.3 per cent, respectively.

Prevalence of sub-clinical mastitis (SCM) in periparturient buffaloes was 9.23 per cent. There was variation in the prevalence of sub-clinical mastitis in periparturient buffaloes. Higher prevalence of sub-clinical mastitis had been reported by Sundrum (2015) [49] and Gundling et al. (2015) [9]. While, lower prevalence of sub-clinical mastitis was observed by Mandali et al. (2004) [22], Macmillan et al. (2021) [21] reported the prevalence of sub-clinical mastitis in primiparous and multiparous dairy animals as 20.7 and 27.1 per cent, respectively.

The prevalence of dystocia in periparturient buffaloes was 7.69 per cent. Similar finding has been reported by Stevenson et al. (2020) [48], Prasad and Prasad (1998) [29] and Ribeiro et al. (2013) [32] have reported somewhat lower prevalence of dystocia in dairy cows whereas Abuom et al. (2012) [1] reported higher prevalence of dystocia in periparturient animals.

![Fig 1: Various individual periparturient disorders in transition buffaloes](https://www.thepharmajournal.com)

The prevalence of milk fever (MF) in periparturient buffaloes was 6.15 per cent. Almost similar findings were reported by Roche (2003) [34] and Sundrum (2015) [49]. Higher prevalence of milk fever has also been reported by Abuom et al. (2012) [1], Braun et al. (2017) [3] and Stevenson et al. (2020) [48]. Lower prevalence of milk fever was reported by Gundling et al. (2015) [9] and Sepulveda-Varas et al. (2015) [39]. Venjakob et al. (2018) [55] reported 6.4 and 63.2 per cent prevalence of milk fever for primiparous and multiparous cows, respectively. Macmillan et al. (2021) [21] reported the prevalence of milk fever in primiparous and multiparous dairy animals as 0.9 and 3.9 per cent, respectively.

Prevalence of mastitis in periparturient buffaloes was 4.61 per cent. Almost similar findings have been reported by Stevenson et al. (2020) [48]. Higher prevalence of mastitis was reported by Abuom et al. (2012) [1], Ribeiro et al. (2013) [32], Gundling et al. (2015) [9], Sepulveda-Varas et al. (2015) [39], Sundrum (2015) [49] and Ruprechter et al. (2018) [37], Macmillan et al. (2021) [21] reported the prevalence of mastitis in primiparous and multiparous dairy animals as 7.6 and 14.5 per cent, respectively.

Prevalence of post-parturient metritis (PPM) was also 4.61 per cent in periparturient buffaloes in present study. Similar findings were reported by Abuom et al. (2012) [1], Ribeiro et al. (2013) [32] and Stevenson et al. (2020) [48]. Higher prevalence of PPM was also reported by Sundrum (2015) [49] and Gundling et al. (2015) [9]. While Sepulveda-Varas et al. (2015) [39], Sundrum (2015) [49], Braun et al. (2017) [3], Ruprechter et al. (2018) [37] and Stevenson et al. (2020) [48] reported higher prevalence of post-parturient metritis (PPM). Macmillan et al. (2021) [21] reported the prevalence of metritis in primiparous and multiparous dairy animals as 17.1 and 13.8 per cent, respectively. Vallejo-Timaran et al. (2021) [53] reported the incidences of puerperal metritis, clinical metritis, clinical endometritis and cytological endometritis as 2.8, 25, 29 and 26 per cent, respectively. The prevalence of torsion in periparturient buffaloes was 4.61 per cent. Abuom et al. (2012) [1] reported uterine torsion as only 0.5 per cent in dairy animals.

Prevalence of post-parturient indigestion (PPI) in buffaloes was 3.08 per cent. Findings of present investigation are in agreement with that of Ribeiro et al. (2013) [32], Padmaja and Rao (2012) [27], Stevenson et al. (2020) [48] and Vallejo-Timaran et al. (2020) [52] have reported higher prevalence of digestive problems in dairy cows. Prevalence of lameness in periparturient buffaloes was 3.08 per cent. Similar findings were reported by Ribeiro et al. (2013) [32] and Stevenson et al. (2020) [48]. Higher prevalence of lameness was reported by Gundling et al. (2015) [9], Sundrum (2015) [49] and Braun et al. (2017) [3].
The prevalence of uterine prolapse in periparturient buffaloes was 3.08 per cent. Similar findings were reported by Prasad and Prasad (1998) [29] and Abuom et al. (2012) [1] in dairy animals. Higher incidence of uterine prolapse was reported by Singh et al. (2005) [43] and Rabbani et al. (2010) [30]. Whereas, lower incidence of pre- and post-partum utero-vaginal prolapse was reported by Mandali et al. (2002) [23]. Kumar and Singh (2009) [17] also reported prepartum and postpartum prolapse 2.66 and 0.07 per cent, respectively. Modi et al. (2016) [25] reported 2.53 % prepartum prolapse in dairy animals.

The prevalence of post-parturient haemoglobinuria (PPH) in periparturient buffaloes was 1.54 per cent. Muhammad et al. (2000) [126], Soren et al. (2014) [46] and Deeba and Bashir (2019) [6] reported higher occurrence of the post parturient haemoglobinuria. Muhammad et al. (2000) [26] also reported that the majority of PPH cases occurred within the first two months of calving.

The prevalence of retention of placenta (ROP) in post-parturient buffaloes was 1.54 per cent. Similar findings were reported by Ribeiro et al. (2013) [32]. While Abuom et al. (2012) [11]; Sundrum (2015) [49]; Sepulveda-Varas et al. (2015) [39]; Khan et al. (2016) [14] and Ruprecht et al. (2018) [37] reported higher prevalence of retention of placenta (ROP) during postpartum period. Macmillan et al. (2021) [31] reported the prevalence of ROP in primiparous and multiparous dairy animals as 6.4 and 7.2 per cent, respectively.

The prevalence of traumatic reticulo-peritonitis (TRP) in periparturient buffaloes was also 1.54 per cent (1/65). Rajput et al. (2018) [13] reported the occurrence in recently calved and pregnant animals as 45 and 30 per cent, respectively. They also reported higher occurrence of foreign body syndrome in buffaloes (60 per cent) than cattle (40 per cent).

During the transitional period, the physiological, endocrine, metabolic and nutritional changes might be attributed to the various subclinical and clinical metabolic and infectious diseases. At the beginning of lactation, there is sudden increase in demand for calcium and phosphorus as these minerals are mobilized from the body and secreted in the colostrum and then in the milk (Lohrenz et al., 2010) [20]. Any deviation or decline in the normal values of these minerals in early lactation, as well as their deficiency in the diet of milch animals can lead to subclinical or clinical manifestations which have a negative impact on production, health and fertility (Roche and Berry, 2006; Holtenius et al., 2008; Kalaitzakis et al., 2010; Kamiya et al., 2010; Kronqvist et al., 2011) [10, 34, 12, 46]. TRP or foreign body syndrome (FBS) mostly occurred in periparturient period because of increase in intra-abdominal pressure due to pregnancy and parturition attributed to penetration of foreign body and occurrence of clinical signs (Aref and Abdel-Hakiem, 2013; Rajput et al., 2018) [31, 2].

Prevalence of various diseases during periparturient period may vary according to geographical locations, production of animals and management conditions.

Reference
18. LeBlanc SJ. Monitoring metabolic health of dairy cattle
48. Stevenson JS, Banuelos S, Mendonca LGD. Transition dairy cow health is associated with first postpartum

49. Sundrum A. Metabolic disorders in the transition period indicate that the dairy cows’ ability to adapt is overstressed. Animals. 2015;5(4):978-1020.

