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Heat stress and tolerance in wheat: A review 

 
Prithviraj Patil, Shiv Prakash Shrivastav, Rushikesh Landge, Kulbhushan 

Patil and Harshraj Salunkhe 

 
Abstract 
Wheat is a common grain crop that provides basic calories and protein to more than 80% of the world's 

population. Concerns about the impact of rising temperatures on wheat production have grown as a result 

of global climate change in recent decades. The main abiotic stresses limiting wheat yield are heat and 

drought. Heat stress disrupts the plant's vital physiological and biochemical processes. In the endosperm, 

high temperatures lower grain number, photosynthetic activity, chlorophyll content, and starch 

production. Heat stress accumulates reactive oxygen species, which cause significant oxidative damage 

to the crop. Heat shock proteins are produced quickly by plants to reduce the effects of heat stress. Heat 

tolerance is influenced by several features such as stay green, chlorophyll fluorescence, and canopy 

temperature. Knowledge of heat stress effect and tolerance at the physiological, biochemical, and 

morphological levels is critical for developing novel crop types that can cope with future climates. 
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1. Introduction 

Wheat (Triticum aestivum L.) is one of the most important cereal crops in the Gramineae 

family, accounting for around 30% of global grain output and 50% of global grain trade (Akter 

et al., 2017) [1]. Wheat is a staple food in over 40 countries throughout the world, supplying 

basic calories and protein to 85 percent and 82 percent of the global population, respectively 

(Sharma D et al., 2019) [69]. According to the FAO, annual cereal production must increase by 

over one billion tonnes by 2050 to feed the anticipated population of 9.1 billion people 

(Chaves MS et al., 2017) [15]. Increased agricultural output and productivity are needed to meet 

rising food demand in the twenty-first century (Iqbal M et al., 2017) [36]. Wheat is grown 

throughout the tropics and subtropics of the world, where it is subjected to a variety of abiotic 

stressors. Crop productivity is severely reduced by adverse environmental conditions (Rahaie 

M et al., 2017) [72]. Heat, drought, salinity, cold, chemical, and water excess are all prominent 

abiotic stresses. Heat and drought, on the other hand, are the principal abiotic factors 

impacting wheat productivity over the world (Lesk C and Liu B 2016) [48]. According to a 

global climate model, the average ambient temperature will likely climb by 6 degrees Celsius 

by the end of the 21st century (De Costa WAJM, 2011) [11]. 

Wheat is extremely susceptible to heat stress. According to estimates, every 1°C increase in 

temperature reduces global wheat yield by 6%. (Asseng, 2011) [7]. Even a 1°C increase in 

temperature above the mean during the reproductive stage can result in a greater loss in grain 

production (Bennett D and Yu Q, 2014) [12]. Wheat undergoes physiological, biological, and 

biochemical changes as a result of high temperatures (Asseng S., 2015) [6]. Heat stress (HS) in 

wheat results in poor seed germination, shorter grain filling times, fewer grains, inactivation of 

the Rubisco enzyme, reduced photosynthetic capability, slower nutrient transport, premature 

leaf senescence, lower chlorophyll content, and lower yield (Hossain A. and Din R., 2013) [32]. 

Grain starch and protein composition are also affected by heat stress. 

Heat tolerance causes the generation of reactive oxygen species (ROS), which cause 

membrane instability, lipid peroxidation, protein oxidation, and nucleic acid damage (Mishra S 

and Mittler R., 2011) [63]. On the other hand, wheat has evolved distinct tolerance mechanisms 

to prevent injury and damage caused by heat stress in order to preserve its survival and growth. 

Heat shock proteins (HSPs) generated by heat shock ensure proper protein folding, refolding, 

and synthesis while also degrading protein aggregates (Hasanuzzaman M and Tripp J., 2013) 

[29]. The antioxidative defence system detoxifies the accumulated ROS using a variety of 

enzymatic and non-enzymatic antioxidants (Sharma et al., 2012) [83]. Heat tolerance in wheat is 

linked to features like stay green (SG), chlorophyll fluorescence, and canopy temperature  
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(Pandey G et al., 2019). 

Wheat (Triticum aestivum L.) is extremely sensitive to high 

temperatures, and the major wheat-producing regions have 

already observed rising growing season temperatures 

(Alexander et al. 2006; Hennessy et al. 2008) [2]. Though heat 

stress affects the metabolic pathways of wheat at every stage 

of its life, ultimately resulting in yield reduction, the effect of 

high temperatures is particularly severe during grain filling, 

with losses of up to 40% possible under extreme conditions 

(Wollenweber et al. 2003, Hays et al. 2007) [91, 31]. Reduced 

grain weight, early senescence, shrivelled grains, reduced 

starch accumulation, altered starch-lipid composition in 

grains, lower seed germination, and loss of vigour are some of 

the other impacts of high temperatures (Balla et al. 2012) [11]. 

Heat stress at the end of the season, or 'terminal' heat stress, is 

also expected to rise in the near future for wheat (Mitra and 

Bhatia, 2008; Semenov and Halford, 2009) [62, 76]. In recent 

years, available water resources for successful crop 

cultivation have also decreased. Droughts are expected to 

become increasingly frequent as a result of severe climatic 

changes around the world. Drought stress can affect plant 

membrane integrity, root depth and extension, stomata 

opening and closing, cuticle thickness, photosynthesis 

inhibition, chlorophyll content reduction, transpiration 

reduction, growth inhibition, hormone composition, protein 

changes, osmotic adjustment, and antioxidant production 

(Szegletes et al. 2000; Lawlor and Cornic 2002; Yordanov et 

al. 2000; Praba et al. 2009) [84, 47, 93, 70] to stand with some 

osmotic changes in their organs. Drought can also result in 

pollen sterility, grain loss, abscisic acid accumulation in 

spikes of drought-susceptible wheat genotypes, and abscisic 

acid production genes in the anthers of drought-susceptible 

wheat genotypes (Ji et al. 2010). One of the main priorities 

for current cultivar improvement, which is higher yielding 

even in water-limited situations, is the Triticum species, 

which is one of the most important human food sources, 

accounting for more than half of total human consumption 

(Fleury et al. 2010; Habash et al. 2009) [25, 27]. 

 

1.1 Effect of heat tolerance on wheat 

Wheat's numerous growth and development stages are 

affected by heat tolerance, resulting in a large yield loss. The 

effect of heat tolerance in plants, on the other hand, is 

dependent on the length of heat exposure and the stage of 

growth during the high temperature period (Balla K and 

Ruelland E. 2010) [74]. Wheat photosynthesis is reduced due to 

poor germination, lower leaf area, early leaf senescence, and 

impaired photosynthetic machinery caused by heat stress 

(Asseng S, Ashraf M and Mathur, 2013) [6]. Wheat 

morphology, physiology, and biochemistry all change as a 

result of heat tolerance. 

 

1.1.1 Effect on wheat morphology 

Heat tolerance has a negative impact on seed germination and 

plant establishment in a variety of crops, including wheat 

(Hossain A. et al., 2013) [32]. High temperatures (45°C) harm 

embryonic cells, resulting in incorrect germination and 

emergence, resulting in poor crop stand (Essemine J. et al., 

2010) [22]. High temperatures reduce the productive tiller's 

ability to survive, resulting in a reduction in yield. Heat 

tolerance in wheat resulted in a 53.57 percent fall in grain 

output and a 15.38 percent decrease in tiller number (Din R, 

et al., 2010) [19]. Heat tolerance causes a reduction in root 

growth, which has an impact on crop yield (Huang B, et al., 

2012) [34]. During the reproductive phase, heat tolerance has a 

substantial impact (Nawaz A, et al., 2013) [66]. A 1°C increase 

in average temperature during the reproductive stage could 

result in a larger loss of grain production (Bennett D and Yu 

Q., 2012) [12]. The ideal temperature for blooming and grain 

filling is between 12 and 22 degrees Celsius (Sharma D, et al., 

2019) [69]. When heat tolerance develops during meiosis, it 

affects the early stages of gametogenesis (Ji X. and Shiran B. 

2010) [41]. Heat tolerance during floral initiation has a 

deleterious impact on microspore and pollen cell development 

(Kaur V. et al., 2010) [43]. The grain development phenomena 

is influenced by the pace and length of grain filling, which is 

particularly sensitive to heat tolerance (Gourdji SM and 

Lobell DB, 2012) [16]. Wheat's life cycle is shortened in heat 

stress compared to normal temperatures (Alam M. et al., 

2014) [29]. 1°C-2°C As the temperature rises, the time of grain 

filling decreases, lowering seed weight (Nahar K. et al., 2010) 

[65]. Short-term heat stress during grain filling can result in a 

23 percent reduction in grain production (Mason RE. et al., 

2010) [57]. Heat tolerance has a negative impact on grain 

quantity and quality. Grain number is reduced in HS 

conditions, resulting in a lower harvest index (Lukac M. et al., 

2012) [56]. Grain quality is lowered as a result of heat stress-

related decreases in assimilate production and remobilization 

(Lizana XC. et al., 2013) [53]. Wheat productivity is 

significantly diminished as a result of the negative effects of 

high temperatures throughout the growth period (Janjua P. et 

al., 2010) [39]. Wheat grain yields can be significantly reduced 

when exposed to ambient temperature (>35°C) for a short 

length of time (Sharma P. et al., 2017) [81]. 

 

 
 

Fig 1: Examples of heat-sensitive and heat-tolerant genotypes after 

heat stress under field conditions at Linfen in Shanxi province in 

2017. 

 

1.1.2 Effect on wheat physiology 

The most significant physiological activity in plants is 

photosynthesis, which is greatly influenced by high 

temperatures. Wheat stroma and thylakoid lamellae are the 

most vulnerable to heat stress (Mathur et al., 2014) [59]. The 

constant alternation of Rubisco, Rubisco activase, and 

Photosystem II occurs at high temperatures (40°C) (Mathur S. 

et al., 2011) [58]. The Rubisco enzyme was discovered to be 

deactivated in less than 7 days when wheat was exposed to 

heat tolerance conditions (Kumar RR. et al., 2016). Under 

heat stress, rubisco activase breaks down, resulting in a 

reduction in photosynthetic ability (Raines CA. et al., 2011) 

[73]. Heat stress changes the flexibility of the thylakoid 

membrane, causing the light harvesting complex II to separate 
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from the photosystem II (Iwai M. et al., 2010) [38]. For growth 

and development, the photosynthetic product must be 

transported to various plant sections. Under high temperature 

stress, the rate of assimilate translocation from source to sink 

is slowed due to a decrease in membrane integrity (Farooq M. 

et al., 2011) [24]. Grain growth and development are aided by 

the mobilisation of water soluble carbohydrate to the 

reproductive sink (Talukder ASMHM et al., 2014) [85]. Seed 

set and seed filling are reduced when the source and sink are 

limited (Lipiec J. et al., 2013) [50]. Plants must discover 

another means to translocate the photosynthetic product into 

the grain if the supply is limited due to heat tolerance (Akter 

N. et al., 2017) [1]. During pre-anthesis heat tolerance, there is 

a rise in carbohydrate remobilization from the stem to the 

developing grain, which helps to recoup the effect on grain 

starch content in post-anthesis heat tolerance (Wang X. et al., 

2012) [89]. Photorespiration is aided by the availability of high 

O2 concentrations. Under heat tolerance conditions, a shift in 

the solubility of O2 and CO2 gases was detected, resulting in 

increased photorespiration in wheat flag leaf (Almeselmani 

M. et al., 2012) [4]. 

 

1.1.3 Effect on wheat biochemistry 

Wheat contains a lot of starch, which is made up of amylose 

and amylopectin. The amount of amylose in a starch is an 

important criterion for determining its quality. Variations in 

amylose content have an impact on starch properties. High 

temperatures are linked to an increase in amylose content and 

the ratio of amylose to amylopectin (Sharma et al., 2015) [82]. 

AGPase (ADP-Glucose Pyrophosphorylase) and starch 

synthase are important enzymes in starch production. The two 

types of starch synthase are soluble starch synthase and 

granule bound starch synthase (Sharma D. et al., 2019) [69]. 

Because the efficiency of enzymes involved in starch 

manufacture decreases at high temperatures, grain starch 

concentration drops by up to one-third of total endosperm 

starch (Liu P. et al., 2011) [52]. Reduced activity of soluble 

starch synthase at high temperatures about 40°C results in 

smaller grains and less starch deposition (Chauhan H. et al., 

2011) [14]. However, Sharma et al. found that lowering Soluble 

Starch Synthase activity to 30°C does not influence starch 

deposition, but it does affect starch composition. He also 

stated that heat stress in wheat has no discernible effect on the 

activity of granule bound starch synthase (Sharma D. et al., 

2018) [80]. Under heat stress, Asthir and Bhatia found a 

significant decrease in starch production in wheat grain, but 

an increase in total soluble sugar and protein (Asthir B.et al., 

2014) [8]. Protein level and composition have a big impact on 

wheat grain quality. Under heat stress, Lizana and Calderini 

found no significant influence on protein content (Lizana XC. 

et al., 2013) [53]. On the other hand, Iqbal et al., found that in 

the heat stress condition, grain protein concentration increases 

along with important amino acid fractions, leaf nitrogen 

content, and sedimentation index (Iqbal M. et al., 2017) [36]. 

 

 
 

Fig 2: Tolerance mechanism of wheat against heat stress 

 

2. Causes of heat stress 

2.1 Climatic Variation 

Based on projected temperature ranges, average worldwide 

temperatures are expected to rise by around 20 degrees 

Celsius over the next 50 years, making many cereal-growing 

locations even less suited (Wringle C., 2006) [92]. The average 

by the end of the year, the ambient temperature is expected to 

rise by 1–6°C. Century twenty-first (De Costa Wajm, 2011) 

[11]. Such a rise in global temperature has the potential to have 

a substantial impact on agricultural productivity based on the 

intensity of high temperatures, drought, and salinity Stresses 

from waterlogging and mineral toxicity Induced by high 

temperatures heat stress is defined as a rise in air temperature 

above a certain point level for a long enough duration to 

produce severe or irreversible damage to plants for agriculture 

in general (Edmark l. Texeira, 2013) [21]. When soil 

temperature rises as a result of rising air temperature 

combined with a decrease in soil moisture, heat stress is 

exacerbated. As a result, heat stress has emerged as a 

significant threat to crop success (S Kumar et al., 2012), 

(David B Lobell et al., 2012) [16]. 

 

2.2 Late sowing 

Several studies show that delaying planting increases the risk 

of terminal heat stress at the grain filling stage, which reduces 

grain yield significantly. Sowing at the right time in the right 

place at the right time to avoid the worst of the heat, go 

between the 15th and the 25th of November. Wheat stress in 

the IGP region (Dubey et al., 2020) [20]. Every day that passes 

brings a new set of problems. Sowing wheat after the 30th of 

November reduces crop production a daily rate of 36 kg/ha 

(Hussain et al., 1998) [35]. Late seeding is, in general, a bad 

idea. Wheat types are subjected to high temperatures, which 

reduces the length of the heading & maturation time, all of 

which have an impact on final yield and grain quality 

(Hossain et al., 2012) [33], (Hakim et al., 2012) [28]. 

https://www.thepharmajournal.com/
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3. Factors affecting wheat growth 

Wheat is classified as a member of the Poaceae family, tribe 

Triticeae, and genus Triticum. It's a self-pollinated, annual 

plant with a lengthy day. Wheat is the most significant food 

crop on the planet. On a worldwide scale, it covers more 

farmed area than any other crop (Muhammady S 2007) [64]. 

Wheat quality qualities that are significant for its usage flour 

protein percentage, milling yield, and rheological properties 

qualities, as well as properties that aid in the production of 

bread. Typically, genetics and genotype-environment 

interactions impact these features. Interactions between 

genotype and environment can result in size or overall 

performance of genotypes has shifted in rank. Understanding 

genotype (crop bio-system) system interactions that are 

impermeable. It is the soil, the atmosphere, and the habitat in 

which plants exist that are important. Cultivar selection, for 

example, is critical in planning major frame decisions 

agricultural management that is sustainable, as well as 

economic planning.  

Crop output is influenced by a number of uncontrolled 

factors, the most significant of which is climate. Cloud cover, 

diurnal temperature range, precipitation, temperature, and 

humidity are the five meteorological variables provided. 

Vapour pressure Wheat is not farmed all year in any country. 

Within Pakistan, we must account for seasonal and regional 

variations. Climate variables are changing. (Janjua et al). 

looked into the effect, Climate change has a negative impact 

on wheat output, according to a new study. As a result, 

temperature had a detrimental impact on wheat growth. As a 

result, productivity is significantly affected. When the floral 

initiation stage and spikelet development were exposed to 

high temperatures, the quantity of grains decreased 

significantly. Having a negative influence on the highest yield 

potential. Strength of the sink and two crucial aspects in grain 

modification are source capacity and source capacity. Wheat 

genotypes subjected to prolonged heat yield and quality, as 

well as a thermal shock. 

 

4. Morphological effect of heat stress 

Heat stress inhibits seed germination and results in fragile 

crop establishment in several crops, including wheat. When 

the temperature surpasses or equals 45 degrees Celsius, 

embryonic cells are impacted, causing seed germination and 

emergence to be delayed (Essemine, Ammar, & Bouzid, 

2010) [22]. The majority of the plant's meristem tissues are 

compromised, resulting in leaf loss, abscission, and other 

symptoms (Kosová, Vtámvás, & Práil, 2011). Photosynthetic 

decrease the environment is also less warm when it is warmer. 

When compared to ideal environmental conditions, biomass 

output increases. It has been discovered that it is more if heat 

stress is present in the reproductive stage of wheat production, 

it can be dangerous (Nawaz, Bourrie, and Trolard, 2013) [66]. 

Even a one-degree increase in average temperature can result 

in a significant decrease in yield (Li et al., 2014). Heat stress 

destroys mitochondria, changes protein expression, decreases 

ATP production, and causes wheat embryos to take up less 

oxygen. As a result, there is a greater loss of seed. According 

to (Hasanuzzaman, Nahar, Alam, Roychowdhury, and Fujita, 

2013) [29], for every 1 to 2 degrees Celsius increase in 

temperature, in wheat, a rise in temperature reduces the bulk 

of the seed by shortening the time it takes for the grain to fill. 

 

5. Conclusion 
Wheat responses to high temperatures have been incorporated 

into the Sirius wheat model during sensitive phases of wheat 

growth, such as around anthesis and during grain filling. The 

Hot Serial Cereal experiment (Wall et al., 2011; White et al., 

2011; Ottman et al., 2012) [88, 90, 68] and published data on a 

heat sensitive cultivar were used to calibrate the model 

parameters (Qin et al., 2008; Vara Prasad and Djanaguiraman, 

2014) [71]. We were able to estimate yield losses for heat 

tolerance cultivars as a result of heat stress in future climate 

scenarios using this method. 

Wheat ideotypes were optimised for the HadGEM2-ES 

(RCP8.5) climatic scenario. Based on criteria determined 

from the highly sensitive wheat cultivar 'Chinese Spring,' two 

types of ideotypes were investigated: totally tolerant to heat 

stress and heat-sensitive ideotypes (Qin et al., 2008) [71]. This 

allowed us to measure the uncertainty in predicting wheat 

yield potential in the face of future harsh weather. It's 

impossible to achieve complete tolerance to high 

temperatures. However, it has been discovered that wheat 

cultivars' vulnerability to high temperatures during anthesis 

and grain filling differs (Alghabari et al., 2014; Vara Prasad 

and Djanaguiraman, 2014) [3, 87]. As a result, between these 

two extremes, heat stress could have an impact on future 

yields. Our findings showed that in the future, a heat-

tolerance trait will be crucial for southern and central Europe 

to achieve high yield potential. Higher and more consistent 

wheat yields could be developed by adjusting crop phenology 

to future weather patterns and prolonging the time of grain 

filling if heat stress tolerance is sufficient. Maintaining leaf 

green area until the conclusion of grain filling was also 

beneficial to wheat. Drought tolerance, which delayed leaf 

senescence, was also a desirable feature in water-scarce 

regions, particularly in southern Europe. To reduce the impact 

of heat stress during flowering and grain filling, the best 

anthesis date for heat stress ideotypes was pushed to the 

beginning of March, a month earlier than for heat tolerance 

ideotypes. As a result, grain yields for heat tolerance and heat 

tolerance ideotypes differed significantly, with heat tolerance 

ideotypes yielding 15.9 t ha–1 and heat stress ideotypes 

yielding only half that (7.3 t ha–1). 
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