www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2022; SP-11(7): 4595-4598 © 2022 TPI www.thepharmajournal.com

Received: 06-04-2022 Accepted: 11-05-2022

P Kalaiselvi

Assistant Professor, Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

S Mahimairaja

Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

E Parameswari

Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

S Paul Sebastian

Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

Corresponding Author P Kalaiselvi Assistant Professor, Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

Studies on nitrogen dynamics of spentwash applied soil in a closed incubation experiment

P Kalaiselvi, S Mahimairaja, E Parameswari and S Paul Sebastian

Abstract

Distillery spentwash contains all nutrients and organic matter and used in agriculture as a source of plant nutrients. Besides all the nutrients, spentwash contains appreciable amount of nitrogen (N) also. The effect of different levels of spentwash application on soil nitrogen dynamics was examined through a laboratory closed incubation experiment. Application of different levels of spentwash had significant influence on soil N. Both the NH₄-N and NO₃-N fractions markedly increased with increase in the levels of spentwash (140 m³). The spentwash not only adds mineral N (NH₄-N and NO₃-N) to soil, but also promotes the mineralization of soil organic N.

Keywords: Spentwash, levels of spentwash, mineralization, nitrogen fractions

Introduction

The spentwash, being loaded with organic and inorganic compounds could bring remarkable changes on the physical, chemical and biological properties of soils and thus influences the fertility of soil significantly. There is a significant increase in the available N, P, K, Ca and Mg contents of the soils due to spentwash application [1]. Similarly application of effluent @ 125 m^3 / ha enhanced the nutrient contents to 325, 60 and 640 kg/ ha N, P and K, respectively than the initial N, P and K status of the experimental soil [2]. The present study was, therefore, undertaken to study the N dynamics in soil under spentwash application and its impact on soil and environmental quality.

Materials and Methods

Collection and Characterization of distillery spentwash

The biomethanated distillery spentwash was characterized for its nutritive value and pollution potential by following standard methods [3] (Table 1). The biomethanated distillery spentwash sample was collected from the Salem Co-operative Sugar Mills Ltd, Mohanur, Namakkal District, Tamil Nadu, India.

Characterization of experimental soil

The soil samples used in the laboratory experiment were collected from a farmer's field in Kidaram village of Namakkal district. The soil belongs to Alfisol (red soil) – *Typic Rhodustalfs* in USDA classification. The soil samples were processed and analysed for important physical and chemical characteristics (Table 2).

Laboratory incubation experiment

The effect of different levels of spentwash on soil nitrogen dynamics was examined through a laboratory closed incubation experiment. Five hundred grams of air-dried soil (2 mm sieved) were weighed in plastic containers. The biomethanated spentwash was added at the rate equivalent to 0, 20, 40, 60, 80, 100, 120, 140 m³/ ha and thoroughly mixed with soil. Wherever necessary required quantity of distilled water was added to achieve a final moisture content equivalent to 60% of field capacity. After adding the spentwash, the plastic containers were covered with polyethylene bags containing small pin-sized holes to permit aeration. Four replicates of each treatment were prepared, randomly placed and incubated in the laboratory at $25\pm2^{\circ}$ C for 90 days. Based on the weight loss distilled water was added to the container to maintain the moisture content throughout the incubation experiment. At the end of 30, 60 and 90 days samples (≈ 100 g) were removed from all the treatments and used for chemical analyses. Moisture factor was computed and applied to express the results on oven dry basis.

The mineralization of N was determined by measuring mineral-N (NH₄-N and NO₃-N) in soil, at 0, 30, 60 and 90 days.

Estimation of soil nitrogen fractions

The fractionation of soil nitrogen was carried out by the procedure given by ^[4] and ^[5]. The individual fractions were estimated according to the procedure given by ^[6].

 Preparation of Equilibrium extract: A quantity of 10 g of soil (0.2 mm) treated with 100 ml of 2 M KCl solution was shaken for one hour and filtered through Whatman No.1 filterpaper.

- Ammonical nitrogen (NH₄-N): An aliquot of 20 ml of the above filterate was distilled with freshly ignited MgO in distillation apparatus and the distillate collected in 2% boric acid containing mixed indicator was titrated with standard H₂SO₄.
- Nitrate nitrogen (NO₃-N): On removal of NH₄ from the sample, added a pinch of devarda's alloy and continued the steam distillation. The amount of NO₃-N was determined as described for NH₄-N.

S. No	Characters	Biomethanated spentwash*					
1.	Colour	Dark brown					
2.	Odour	Unpleasant burnt sugar					
3.	рН	7.1					
4.	EC (dS/m)	38					
5.	Total dissolved solids	50000					
6.	Total suspended solids	3300					
7.	Total solids	53300					
8.	Biological oxygen demand	12800					
9.	Chemical oxygen demand	35000					
10.	Carbon (g/ L)	24					
11.	Nitrogen	420					
12.	Phosphorus	40					
13.	Potassium	9097					
14.	Total sugars (%)	3.49					
15.	Reducing sugars (%)	1.77					
16.	Total phenols	84					
17.	Zinc	7.20					
18.	Iron	78					
19.	Manganese	5.3					
20.	Copper	5.5					
21.	Bacteria (x 10 ⁶ CFU/ mL of effluent)	12					
22.	Fungi (x 10 ⁴ CFU/ mL of effluent)	19					
23.	Actinomycetes (x 10 ³ CFU/ mL of effluent)	Nil					

Table 1: Characteristics of biomethanated distillery spentwash

* Mean of triplicate samples (Values are in mg/ L unless otherwise stated)

Table 2: Characteristics of soil used in the incubation experiment

S. No	Characters	Values						
a). Mechanical properties								
	Textural class	Sandy loam						
	Sand (%)	79.5						
	Silt (%)	14.8						
	Clay (%)	10.3						
	USDA classification	Typic Rhodustalfs						
b). Physico-chemical properties								
1.	pH (1: 2.5 soil water suspension)	5.40						
2.	EC (dS/m) (1: 2.5 soil water suspension)	0.043						
3.	Organic carbon (g/ kg)	5.20						
4.	NH4- N (mg/ kg)	52						
5.	NO ₃ - N (mg/ kg)	55						
6.	NaOH - P _i (mg/ kg)	194						
7.	NaOH - P _o (mg/ kg)	488						
8.	HCl - P (mg/ kg)	42						
9.	NH4OAc-K (mg/ kg)	80						
9.	Sodium (cmol (p ⁺)/ kg)	0.26						
10.	Calcium (cmol (p ⁺)/ kg)	0.69						
11.	Magnesium (cmol (p ⁺)/ kg)	0.52						
12.	Sulphate (mg/ kg)	26						
13.	Chloride (mg/ kg)	17						

Treatments		Incubation period (days)					
		30	60	90	Mean		
T ₁ - Control	54	58	70	51	58		
T ₂ - Soil + Spentwash @ 20 m ³ / ha	134	192	80	82	122		
T ₃ - Soil + Spentwash @ 40 m ³ / ha	140	204	90	92	132		
T ₄ - Soil + Spentwash @ 60 m ³ / ha	194	210	94	92	148		
T ₅ - Soil + Spentwash @ 80 m ³ / ha	224	222	98	96	160		
T ₆ - Soil + Spentwash @ 100 m ³ / ha	272	234	104	94	176		
T ₇ - Soil + Spentwash @ 120 m ³ / ha	272	240	120	104	184		
T ₈ - Soil + Spentwash @ 140 m ³ / ha	296	246	130	106	195		
Mean	198	201	98	90	147		
	SEd		CD (0.05)				
Т	2.34		4.65				
D	1.66		3.29				
T x D	4.69		9.31				

 Table 3: Effect of spentwash application on NH₄-N (mg/ kg) content of soil during incubation

 Table 4: Effect of spentwash application on NO₃-N (mg/ kg) content of soil during incubation

Treatments		Incubation period (days)					
		30	60	90	Mean		
T ₁ - Control	66	118	140	148	118		
T ₂ - Soil + Spentwash @ 20 m ³ / ha	78	138	142	160	130		
T ₃ - Soil + Spentwash @ 40 m ³ / ha	84	142	144	204	144		
T ₄ - Soil + Spentwash @ 60 m ³ / ha	92	150	152	268	165		
T ₅ - Soil + Spentwash @ 80 m ³ / ha	104	154	160	346	192		
T ₆ - Soil + Spentwash @ 100 m^3 / ha	106	156	160	390	203		
T ₇ - Soil + Spentwash @ 120 m ³ / ha	114	160	184	420	220		
T_8 - Soil + Spentwash @ 140 m ³ / ha	114	174	214	424	232		
Mean	95	150	161	295	175		
	SEd		CD (0.05)				
Т	3.06		6.08				
D	2.17		4.30				
T x D	6.12		12.16				

 Table 5: Effect of spentwash application on organic carbon (g/ kg) of soil during incubation

Treatments		Incubation period (days)				
		30	60	90	Mean	
T ₁ - Control	5.2	5.0	5.7	3.3	4.8	
T ₂ - Soil + Spentwash @ 20 m ³ / ha	8.0	6.8	6.1	4.5	6.4	
T ₃ - Soil + Spentwash @ 40 m ³ / ha	8.8	7.6	6.3	5.6	7.1	
T ₄ - Soil + Spentwash @ 60 m ³ / ha	9.7	8.2	6.8	6.8	7.9	
T ₅ - Soil + Spentwash @ 80 m ³ / ha	10.7	8.3	7.8	7.4	8.5	
T_{6} - Soil + Spentwash @ 100 m ³ / ha	11.6	8.5	8.2	8.0	9.1	
T ₇ - Soil + Spentwash @ 120 m ³ / ha	12.2	9.8	8.3	8.0	9.6	
T_8 - Soil + Spentwash @ 140 m ³ / ha	13.4	10.5	9.5	9.3	10.7	
Mean	10.0	8.1	7.3	6.6	8.0	
	SEd		CD (0.05)			
Т	0.20		0.50			
D	0.22		0.36			
ТхD	0.51		1 1 2			

Result and Discussion

The effect of spentwash on N dynamics in soil is presented in Table 3. Application of different levels of spentwash had significant influence on soil N. Immediately after application of spentwash, the NH₄-N in soil markedly increased from 134 mg/ kg (control) to 296 mg/ kg. The highest concentration was recorded due to the application of 140 m³/ ha (T₈). The spentwash application up to 60 m³/ ha resulted significant increase in the NH₄- N at 30 days (T₁ to T₄) and thereafter, a decreasing trend was observed; whereas, in treatments T₅ (80 m³/ ha) to T₈ (140 m³/ ha), the concentration of NH₄-N in soil was progressively decreased during 90 days of incubation.

The treatments and incubation period had significantly affected the NH₄-N content in soil. At all days of incubation, the concentration of NH₄-N was the lowest in control and the highest in treatment (T_8) that received spentwash at the rate equivalent to 140 m³/ ha.

Similar to NH₄-N, the NO₃-N in soil under controlled condition was also changed significantly due to spentwash application. Initially the NO₃-N in soil ranged between 66 and 114 mg/ kg (Table 4). Increase in the rate of application had significantly increased the NO₃-N content of soil. During 90 days of incubation, the concentration of NO₃-N progressively increased at all treatments. At the end of incubation, the concentration varied between 148 and 424 mg/ kg. At all days of incubation, the NO₃-N content was the lowest in the control and the highest in treatment (T₈) which received the spentwash at a rate of 140 m³/ ha. The effect of treatments, incubation period and their interaction had significant impact on NO₃-N in soil.

The N dynamics in soil was significantly influenced by the application of spentwash. The data indicated that the mineralization of N occurs continuously in soil during incubation up to 60 days and thereafter the mineralization rate decreased at 90 days due to possible net immobilization and microbial uptake. Increase in the levels of spentwash markedly increased the rate of mineralization of N during the incubation.

Both the NH₄-N and NO₃-N fractions markedly increased with increase in the levels of spentwash. This might be due to the inorganic N present in the distillery spentwash. This result corroborates with the findings of ^[7], who reported that under land-based treatment of effluent, NO₃-N and NH₄-N concentrations in soil may increase as a direct result of inorganic N present in the effluent and increased soil organic matter (SOM) mineralization. Similar results were observed by ^[8], who stated that effluent irrigation can significantly increase total N stored within a soil profile, according to effluent composition, loading rates and solution chemistry.

The increase in the NH₄-N faction was observed up to 30 days of incubation in spentwash applied soils. This was in line with the findings of ^[9] who reported that addition of pig slurry and cocomposted sewage sludge has resulted in an immediate but short term increases in inorganic N contents, particularly NH4⁺. After 30 days of incubation a decline in the NH4-N fraction was observed, probably due to the N transformation process through which the NH₄-N is converted into NO₃-N (or) due to immobilization and microbial uptake. In an incubation experiment ^[10] found that various components of dairy compost the bulk mineralized ammonium was observed to have been nitrified to nitrate within 14 to 28 days. The reduction in NH₄-N could also be due to conversion of NH₄-N to NO₃-N (nitrification) and further the NO₃-N lost during incubation through biological denitrification, a microbial process through which NO₃ is reduced to nitrous oxide (N₂O) and molecular N (N₂) and lost from soil [11].

The NO₃-N fraction was found increased continuously until the end of the incubation experiment. Nitrification of NH₄-N added through spentwash, and mineralization and nitrification of soil organic N might have increased the NO₃-N in soil. Similar results were obtained in a study conducted with different organic amendments like sewage sludge, farmyard manure and municipal solid waste compost. The organic amendments are important source of soil nitrogen and the availability of total, mineral and organic nitrogen in the soil profile is greatly improved during mineralization ^[12, 13] and ^[14] reported that an increase in the rate of spentwash markedly increased the rate of both mineralization and nitrification in soil. However greater amount of NO₃ than NH₄-N was evident particularly at the later stage of incubation. The spentwash contains large amount of organic carbon. It increased the soil organic carbon content (Table 5) which in turn stimulated the soil microbial activity by providing a carbon substrate. The balance between N mineralization and immobilization is closely linked to C substrate availability and the C/N ratio of the available organic matter ^[15].

Conclusions

Both the NH₄-N and NO₃-N fractions markedly increased with increase in the levels of spentwash. This might be due to the inorganic N present in the distillery spentwash. The spentwash not only adds mineral N (NH₄-N and NO₃-N) to soil, but also promotes the mineralization of soil organic N.

Acknowledgements

The authors thanks the Salem Cooperative Sugar mills Ltd., Mohanur in Namakkal District, Tamil Nadu, India. for their financial assistance.

References

- 1. Kalaiselvi P, Mahimairaja S. Nutrients dynamics in soil under spentwash application and its impact on crop and environmental quality. M.Sc. Thesis, Tamil Nadu Agricultural University, Coimbatore, 2009, 156p.
- 2. Kumarimanimuthu, Kalaimathi. Improving Physiological and Yield Traits of Groundnut (*Arachis hypogaea* L.) by using Various Sources of Organic Wastes and Bio Fertilizers, Rhizobia. Indian Journal of Agricultural Research. 2021;55:473-477.
- 3. APHA. Standard methods for the examination of water and wastewater, 16th ed. American Public Health Association, Washington, DC, 1989, 83p.
- Cheng HH, Kurtz DR. Chemical distribution of added nitrogen in soils. Soil Sci. Soc. Am. Proc. 1983;27:313-316.
- Keeney DR, Bremner JM. Effect of cultivation on the nitrogen distribution in soil. Soil Sci. Soc. Am. Proc. 1964;28:653-656,
- Bremner JM. Inorganic and organic forms of nitrogen, In: C.A. Black (Ed.) Methods of Soil Analysis. Part. II. Am. Soc. Agron. Madison. Wisconsin, 1965, 1179-1255.
- Myers RJK, Campbell CA, Weier KL. Quantitative relationship between net nitrogen mineralization and moisture content of soils. Can. J Soil Sci. 1982;62:111-124.
- Degens BP, Schipper LA, Claylon JJ, Russell JM, Yeates GW. Irrigation of an allophonic soil with dairy effluent for 22 years: Responses of nutrient storage and soil biota. Aust. J Soil Res. 2000;38:25-35.
- Chantigny MH, Rochette P, Angers DA. Short term C and N dynamics in a soil amended with pig slurry and barley straw: A filed experiment. Can. J Soil Sci. 2001;81:131-137.
- Van Kessel JS, Reeves JB, Meisinger JJ. Nitrogen and carbon mineralization of potential manure components. J. Environ. Qual. 2000;29:1669-1677.
- Firestone MK. Biological denitrification, In: F.J. Stevenson (Ed.) Nitrogen in Agricultural Soils. Agronomy Monograph No.22, Am. Soc. Agron. Madison. Wisconsin, 1982, 289-326pp.

- 12. Wierzbowska J, Sienkiewicz S, Załuski D. Nitrogen Fractions in Soil Fertilized with Waste Organic Materials. Agronomy. 2021;11(8):1474.
- Hadas A, Kautsky R, Portnoy. Mineralization of composted manure and microbial dynamics in soil as affected by long term nitrogen management. Soil Biol. Biochem. 1996;28:733-738.
- 14. Marschner P, Kandeler E, Marschner B. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 2003;35:453-461.
- 15. Cookson WR, Muller C, PAO' Brien, Murphy DV, Grierson PF. Nitrogen dynamics in an Australian semiarid gras sland soil. Ecology. 2006;87:2047-2057.