Pharmacological traditional and health benefits of bottle gourd: A review

Syed Dilshad and Munna Muhammad Suhail N

Abstract
This paper is represented in a way to enhance the traditional uses and benefits of human health. Bottle gourd (*Lagenaria siceraria*) of family Cucurbitaceae. It is perennial climbing plant which is widely grown as vegetable crop in countries of tropical regions such as Japan, India & Thailand. The climber since from ancient times known for its Therapeutic properties that include piles, diabetes jaundice, ulcer, hypertension, colitis, cardiac failure and properties which has been used for various complications also for the cure of skin diseases. The pulp of fruit is known for its cooling, diuretic, laxative and pectoral properties. By boiling the pulp of this fruit in oil has the benefits to cure conditions like insomnia and arthritis. Compounds like flavonoids, saponins, have been isolated from species. Besides the fruit extracts has been found to contain various phytochemical activities.

Keywords: Pharmacological traditional, health benefits, bottle gourd

Introduction
Bottle gourd is also known as a calabash (*Lagenaria siceraria*) It belongs to gourd family Cucurbitaceae and is a running or climbing vine. The fruit is harvested young. It has light green color with smooth skin and a white inner flesh. White flowered gourd, long melon, New Guinea bean and Tasmania bean (Decker-walters, 2004) [3]. These fruits have variety of shapes they can be rounded, small and bottle shaped, or slim and they can be grown to be a meter long. Rounder varieties are known as calabash gourds. The gourds are one of world’s first cultivated plants grown not primarily for food, but can be used as containers, utensil and also in musical instruments. These gourds are known to be originated from Asia to Africa, Europe to Americans due to the migration of human beings and through the seeds floating across the oceans inside the gourd (Yeti sir 2008) It has also been proven to be existed in new world prior to arrival of Christopher Columbus. The bottle gourd has been recovered from archaeological contexts in China and Japan during (8,000-9,000) B.P. But in Africa after high research record remains the 1884 report of bottle gourd being recovered from 12th Dynasty dating to (4,000) Bephenium considering genetic and archaeological information together it is known to be brought independently under domestication first in Asia, then in Africa more than 4,000 years later. The gourd is commonly cultivated in tropical and subtropical areas of world, and domesticated in southern Africa. Stands of Sicarii, which may be source plants and not merely considered domesticated stands, were reported in Zimbabwe in 2004.Walahfrid Strabo (808-849), abbot and poet from Richenda and advisor to Carolingian kings, discussed gourd in his Fonticulus as one of 23 plants of ideal garden. The bottle gourd was known to be as drifted across Atlantic Ocean from Africa to South America, but in 2005 a group of researchers suggested that it may have been domesticated earlier than food crops and livestock. Paleo-Indians, which they based on study of genetics and archaeological samples reported that gourds in American archaeological research were more related to Asian variants than African ones. In 2014 researchers undergone more through genetic study on various genomes of bottle gourd sample, and concluded that North and South American specimen were closely related to African variants and could have come across the ocean long 10,000 years ago. Genus Cucurbita include different kinds of gourds like pumpkins squashes Out of these the gourd which is probably ornamental is most extensively grown gourd in United States. The different variety of fruits originate in this gourd makes it amusing to humans’ eye. The gourd belongs to genus Lagenaria which is derived from the word lagena meaning bottle (Milind and Satbir, 2011) [3]. Bottle gourd being a monoecious is cross pollinated crop its major pollination is done by bees. Fruit is rich in protein, amino acids and minerals (Hegazy and El-Kinawy, 2011) [3] Bottle gourd known as one of excellent fruits gifted by nature to human beings by providing...
the composition of all essential nutrients, constituents, composition and medicinal important that are required to human beings to maintain good health.

Biology and Ecology

Genetics
The chromosome number of *Lagenaria siceraria* species reported is 2n = 22 (Singh 1990) [34] These species are highly heterozygous and variable Hybridization is very common. The region with highest varieties and diversity of these species are found in India followed by west Africa (Stephens 2015) [35] Tropical Africa is known as primary gene pool for this species (Singh 1990) [34].

Reproductive biology
Flowers are monocoeous, solitary and (female and male flowers are found on same plant) Both male and female flowers open at same time Female flowers are found with short stalked while male flowers are found with long stalked. And remain open only for few hours. It is a diploid species and cross pollination is highly favourable.

Longevity
It is fast growing, vigorous annual wine (Stephens 2015) [35].

Activity patterns
L. siceraria seeds usually start germinate after 5-7 days of sowing. Vine start emerging after 14 days. Flowering starts after 55-65 days. Male and female flower ratio is high under cool temperatures. The fruit yield per each plant is about 10-15 fruits.

Environment requirements
The species is widely cultivated in tropical and sub-tropical climates and subtropical climates with temperature ranges from 19-27 C. And annual rainfall of 700-28000mm. soil type includes medium light heavy with pH range of 5.5-7.5 and germination temperature is 20-25.

Morphology
Bottle gourd vines are quick growing annuals with hairy systems long forked tendrils, and a mushy odour. Different forms of the bottle gourd have been cultivated for specific purposes, and the sizes of the vines, leaves and flowers as well as the shapes and sizes of the fruits, varies greatly.

Plant profile: (The Ayurvedic Pharmacopeia of Indian system of Medicine and Homeopathy; 2001. PP.215-6) [36] It occurs throughout India and is grown worldwide now. common names include the following

- Bottle gourd (English)
- Lauki (Hindi)
- Dudhi (Gujarati)
- Ghiya (Urdu)
- Sorakkai (Tamil)

Properties mentioned in Ayurveda: (The Ayurvedic Pharmacopeia of Indian system of Medicine and Homeopathy; 2001. pp. 215-6) [36].

- Madhura (sweet)
- Kashaya (astringent)
- Sita (cool)
- Vipaka (pleasant)

Table 1: Nutrient Content of Bottle Gourd (Gopalan et al., 1971) [31] Rahaman, 2003) [23]

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>Units</th>
<th>Fruit</th>
<th>Seed</th>
<th>RDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minerals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg</td>
<td>11</td>
<td>535</td>
<td>300-400%</td>
</tr>
<tr>
<td>calcium</td>
<td>mg</td>
<td>26</td>
<td>43</td>
<td>800-1000%</td>
</tr>
<tr>
<td>iron</td>
<td>mg</td>
<td>0.20</td>
<td>14.97</td>
<td>10-15%</td>
</tr>
<tr>
<td>sodium</td>
<td>mg</td>
<td>2</td>
<td>18</td>
<td>500.0%</td>
</tr>
<tr>
<td>phosphorous</td>
<td>mg</td>
<td>13</td>
<td>1174</td>
<td>800-1200%</td>
</tr>
<tr>
<td>potassium</td>
<td>mg</td>
<td>150</td>
<td>807</td>
<td>99.0%</td>
</tr>
<tr>
<td>manganese</td>
<td>mg</td>
<td>0.066</td>
<td>3.02</td>
<td>2-5.5%</td>
</tr>
<tr>
<td>copper</td>
<td>mg</td>
<td>0.026</td>
<td>1.387</td>
<td>2-3%</td>
</tr>
<tr>
<td>Zinc</td>
<td>mg</td>
<td>0.70</td>
<td>7.46</td>
<td>15.0%</td>
</tr>
<tr>
<td>selenium</td>
<td>mg</td>
<td>0.2</td>
<td>5.60</td>
<td>50-200%</td>
</tr>
<tr>
<td>Total lipid</td>
<td>g</td>
<td>0.02</td>
<td>45.85</td>
<td>20-22%</td>
</tr>
<tr>
<td>Protein</td>
<td>g</td>
<td>0.62</td>
<td>24.54</td>
<td>40-80%</td>
</tr>
<tr>
<td>Fiber</td>
<td>g</td>
<td>0.50</td>
<td>3.90</td>
<td>40-80%</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>g</td>
<td>3.39</td>
<td>17.81</td>
<td>1-2.5%</td>
</tr>
<tr>
<td>Vitamins</td>
<td>Units</td>
<td>Fruit</td>
<td>Seed</td>
<td>RDA</td>
</tr>
<tr>
<td>Thiamin</td>
<td>mg</td>
<td>0.029</td>
<td>0.21</td>
<td>1.5%</td>
</tr>
<tr>
<td>Niacin</td>
<td>mg</td>
<td>0.320</td>
<td>1.745</td>
<td>20.0%</td>
</tr>
<tr>
<td>Riboflavin</td>
<td>mg</td>
<td>0.022</td>
<td>0.320</td>
<td>1.8%</td>
</tr>
<tr>
<td>Vitamin B6</td>
<td>mg</td>
<td>10.1</td>
<td>1.9</td>
<td>45-60%</td>
</tr>
<tr>
<td>Vitamin B1</td>
<td>IU</td>
<td>16</td>
<td>380</td>
<td>2700-5000%</td>
</tr>
<tr>
<td>Folate total</td>
<td>mcg</td>
<td>6</td>
<td>58</td>
<td>200.0%</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>mg</td>
<td>-</td>
<td>1.00</td>
<td>300iu/10mg%</td>
</tr>
<tr>
<td>Vitamin B12</td>
<td>mcg</td>
<td>-</td>
<td>2.2</td>
<td>3.6%</td>
</tr>
<tr>
<td>Lipids</td>
<td>Units</td>
<td>Fruit</td>
<td>Seed</td>
<td>RDA</td>
</tr>
<tr>
<td>Fatty acids</td>
<td>g</td>
<td>0.002</td>
<td>8.674</td>
<td>-</td>
</tr>
<tr>
<td>Total saturated</td>
<td>g</td>
<td>0.009</td>
<td>20.904</td>
<td>-</td>
</tr>
<tr>
<td>Fatty acids total polyunsaturated</td>
<td>g</td>
<td>0.004</td>
<td>14.258</td>
<td>-</td>
</tr>
<tr>
<td>Fatty acids total monosaturated</td>
<td>g</td>
<td>0.004</td>
<td>14.258</td>
<td>-</td>
</tr>
<tr>
<td>Amino acids</td>
<td>Units</td>
<td>Fruit</td>
<td>Seed</td>
<td>RDA</td>
</tr>
<tr>
<td>Threonine</td>
<td>g</td>
<td>0.018</td>
<td>0.431</td>
<td>0.7%</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>g</td>
<td>0.003</td>
<td>0.903</td>
<td>0.2%</td>
</tr>
<tr>
<td>Leucine</td>
<td>g</td>
<td>0.036</td>
<td>2.079</td>
<td>1.5%</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>g</td>
<td>0.033</td>
<td>1.286</td>
<td>1.0%</td>
</tr>
<tr>
<td>Lysine</td>
<td>g</td>
<td>0.021</td>
<td>1.833</td>
<td>1.1%</td>
</tr>
<tr>
<td>Cystine</td>
<td>g</td>
<td>-</td>
<td>0.301</td>
<td>-</td>
</tr>
<tr>
<td>Methionine</td>
<td>g</td>
<td>0.004</td>
<td>0.551</td>
<td>0.7%</td>
</tr>
<tr>
<td>Arginine</td>
<td>g</td>
<td>0.014</td>
<td>4.033</td>
<td>280%</td>
</tr>
<tr>
<td>Histidine</td>
<td>g</td>
<td>0.004</td>
<td>0.681</td>
<td>-</td>
</tr>
<tr>
<td>Valine</td>
<td>g</td>
<td>0.027</td>
<td>1.972</td>
<td>1.1%</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>g</td>
<td>0.015</td>
<td>1.222</td>
<td>-</td>
</tr>
</tbody>
</table>

Physiochemical properties of Bottle gourd
The *L. siceraria* fruits are fair source of beta carotene, ascorbic acid, dietary soluble fibres vitamin B complex and rich source of choline level a lipotropic factor, a curer of mental disorders. It is also embedded with required metabolite and metabolic functions with good source of amino acids and minerals antecedent for brain functions.

The *L. siceraria* fruit contain low waste index of (5.83%) and has edible index of (94.17%) hence proved to be important for processing. (Sawate et al., 2009) [37] The fruit is available at cheaper rate but rich in nutrients, vitamins, minerals, antioxidants and 96% of moisture. The fruit juice contains enzyme named betaglucosidase-elastase. The fruit contains 1.6% choline in dry basis a chemical used to have neurological effects. (Thomas, 2008) [38] The fruit is also reported to have soluble dietary fibres having profound effect in lowering serum cholesterol also reveals that pectin is predominant component of soluble fibres in *Lagenaria siceraria* fruit. The bottle gourd oil has many applications in various industries (Habibur 2003 [39]; Hassan et
It is a minor source of vegetable oil with significant amount of fats.

Table 2: Biochemical/chemical constituents of bottle gourd fruit

<table>
<thead>
<tr>
<th>Macro and micro mineral content (mg/100g)</th>
<th>Protein</th>
<th>Fats</th>
<th>Moisture</th>
<th>Fiber</th>
<th>Ash</th>
<th>Carbohydrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.20</td>
<td>0.20</td>
<td>94.5</td>
<td>0.70</td>
<td>0.50</td>
<td>3.75</td>
<td></td>
</tr>
<tr>
<td>Vitamin content (mg/100g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin B2(Riboflavin)</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin B5(Niacin)</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin B1(Thiamine)</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin C (Ascorbic acid)</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pharmacological activities

L. sciceria fruit juice extract was studied in mice and rats. Juice extract was studied for its anti-inflammatory and analgesic activity using acetic acid induced writhing and formalin induced pain tests in mice. LSFJE extracts (150-300mg/kg, p.o) exhibited dose dependent inhibition of writhing and also showed a significant inhibition of both phases of formalin test with less intense effect on first phase than second phase. L. sciceria juice extract also inhibited anti-inflammatory activity against acute inflammatory models i.e., ethyl phenyl propionate induced albumin induced paw edema, ear edema arachidonic acid induced hind paw edema in rats. LSFJE extract showed significant inhibitory effect on ear edema formation at 30 min, 1hr 2hr after ethyl phenyl propionate injection. The LSFJE extracts in other acute inflammatory models significantly constrained arachidonic acid induced hind paw edema and carrageenan. The juice extracts also constrained albumin induced paw edema for a period of 90 min. (Ghule et al., 2006)

Antihyperlipidemic activity

Lagenaria sciceria antihyperlipidemic effect in triton induced hyperlipidemic rats were studied with four different extracts i.e., chloroform, petroleum ether, aqueous and alcoholic extracts from L. sciceria were administrated orally. Alcoholic and chloroform extracts at different doses (400 and 200 mg/kg, p. o.o) significantly showed in lowering low density lipoprotein, lowering total cholesterol and triglycerides with an increased level of HDL. Constituents isolated from bottle gourd was found to be having antihyperlipidemic activity in triton-x induced hyperlipemia. (Ghule et al., 2006)

Antioxidant activity

Bottle gourd fruit epicarp extract of acetone by using DPPH showed maximum antioxidant property against in vitro models. The fresh juice shows free radical scavenging activity (Deshpande et al., 2007) found very effective as antioxidant, hepatoprotective, immunomodulatory antihyperglycemic and antihyperlipidemic agent. The extracts were assessed by 1,1-diphenyl 2-picylhydrazyl assay by using Soxhlet apparatus and serial extraction technique. The fruit peel extracts at safe dosage of 50, 100 and 200mg/kg were tested in T4 induced hyperthyroid animals was found to be most effective and could inhibit levels of serum thyroxine and glucose as well as hepatic LPO. After the treatment of 21 days reductions in concentrations of glucose, hepatic LPO and serum thyroid hormones were observed. (Dixit et al., 2008)

Diuretic activity

The L. siciera methanol extract and vacuum dried juice extracts was evaluated for Diuretic activity evaluated in albino rats (Ghule et al., 2007) by measuring different parameters like urine concentration of electrolytes such as sodium, chlorides and potassium and total urine volume at concentration of (100-200mg/kg, o) both vacuum dried fruit extracts and methanolic extracts showed higher urine volume and exhibited dose dependent increased in excretion of electrolytes compared to respective controls.

Anticancer activity

Cucurbitaceae plant family possess antitumor activity the study was carried out to evaluate the anti-cancer activity of methanolic extracts of aerial parts of Lagenaria siceraia on mice by inoculation of EAC (Ehrlich’s Ascites Carcinoma) with MELS extracts at (200 mg and 400mg/kg) with standard drug 5-fluouracil (20mg/kg) were continued for 9 days effect of drug response was made by study including biochemical estimation, increasing life span haematological parameters of liver tissue. Results revealed L. siceraia shows significant anticancer activity due to its antioxidant and cytotoxicity properties. (Vichai and Kirtikara, 2006)

Antimicrobial activity

The Lagenaria siceraia methanolic extracts of seeds, leaves and flesh fruit are extensively used for treatment of skin disorders in traditional medicine. Goji evaluated antimicrobial activity of Ls by using agar-well diffusion method. Results revealed L. siceraia methanolic extracts show activity against Strepococcus pyogenes and Pseudomonas aeruginosa, but not significant against isolates of Escherichia coli and S. aureus. Thus, antimicrobial activity in Lagenaria siceraia can be used to treat skin disorders. (Goji et al., 2006)

Cardioprotective activity

The L. siceraia fruit powder showed good cardioprotective effects in rats. The drug was induced against Doxorubicin induced cardiotoxicity in rats at 200mg/kg, p.o for 18 days prevents alteration in antioxidants and reduced glutathione. The extracts powder and ethanolic extracts of LS showed protection against changes in histopathological alternation induced by doxorubicin and increased in force of contraction and decrease in rate of contraction in isolated rats. (Deshpande et al., 2008; Hassanpour et al., 2008)

Anthelmintic activity

The L. siceraia seeds show anthelmintic activity against Hymenolepsis nana (tapeworm) Pheretima postuma, and Aspicularis tetraptera (pinworm) infections in mice was evaluated using piperazine citrate concentration at (10-mg/ml) as reference substance and distilled water as control. The ethanolic seed extracts of L. siceraia, Cucumis sativus and Cucurbita maxima showed potent activity and also caused death of tapeworms. (Thube et al., 2009)
Opposition to n
c

title gourds is

13.

12.

11.

10.

9.

8.

7.

6.

4.

1.

The Pharma Innovation Journal

Leaves
Seed
Fruit

Acidity, indigestion and ulcers. Indian traditional medicine

Ayurveda recommends bottle gourd (Lagenaria siceraria) as a
treatment for diabetes, ulcer, piles, fever cough and asthma

Ayurveda highly recommends this food for diabetic

condition

In analgesic activity on acetic acid-induced writhing peels at a concentration of

400mg/kg showed excellent results by inducing 75% in carrageenan-induced rat

paw edema test (Santos 2004; Cashin et al., 1997).

The methanolic extracts of L. siceraria leaves showed dose-dependent (10-

30µg/ml) anti-allergic activity against compound 48/80 induced mast cell
degranulation in rats. (Nidhi et al. 2019) [74]

Crude extracts of L. siceraria leaf showed the highest mean zone of inhibition from

9.0-11.0 at a concentration of 100µg/mL against Aspergillus Niger, Aspergillus

flavus (Habib-ur Rahman 2003) [23]

Ethanol extracts of L. siceraria at 50µg/ml concentration by using DPPH assay
displayed 19% scavenging activity. chloroform extracts of L. siceraria at 50µg/ml
displayed 10.9% scavenging activity (Rachh et al., 2009 [55]; Rahman et al., 2012

[56]

The aqueous extracts of L. siceraria showed highest anti-fungal activity against

S. Typhimurium and E. aerogenes (Adeniyi BA and Odufowora 2000) [58].

to

Antibacterial

Antimicrobial

Antioxidant

Supportive Evidence

The alcoholic extracts of L. siceraria showed antibacterial activity against E. coli
at 30, 40, and 50mg respectively and lower inhibitory effect against B. subtilis, S.
aureus at 30, 40 and 50mg. (Handayani, 2017) [59]

Methanolic extracts of L. siceraria by using the agar well diffusion method showed
antimicrobial activity against Streptococcus pyogenes and Pseudomonas

aeruginosa (Goji et al., 2006) [43].

The DPPH (1,1-Diphenyl-2-picrylhydrazyl) radical scavenging activity of n-

butanol and ethyl acetate extracts of fresh fruits of L. Siceraria (Erasto and

Mbawombo, 2009) [50] showed antioxidant activity and indicated that fruits are a

potential source of natural antioxidants (Deore et al., 2009) [51].

In analgesic activity on acetic acid-induced writhing peels at a concentration of

400mg/kg showed excellent results by inducing 75% in carrageenan-induced rat

paw edema test (Santos 2004; Cashin et al., 1997).

The methanolic extracts of L. siceraria leaves showed dose-dependent (10-

30µg/ml) anti-allergic activity against compound 48/80 induced mast cell
degranulation in rats. (Nidhi et al. 2019) [74]

Crude extracts of L. siceraria leaf showed the highest mean zone of inhibition from

9.0-11.0 at a concentration of 100µg/mL against Aspergillus Niger, Aspergillus

flavus (Habib-ur Rahman 2003) [23]

Ethanol extracts of L. siceraria at 50µg/ml concentration by using DPPH assay
displayed 19% scavenging activity. chloroform extracts of L. siceraria at 50µg/ml
displayed 10.9% scavenging activity (Rachh et al., 2009 [55]; Rahman et al., 2012

[56]

The aqueous extracts of L. siceraria showed highest anti-fungal activity against

S. Typhimurium and E. aerogenes (Adeniyi BA and Odufowora 2000) [58].

to

Antibacterial

Antifungal

Radical scavenging activity

Antiallergic activity

Antimicrobial activity

Antibacterial activity

The leaves, stem, fruits, oil and seeds of bottle gourd are

used traditionally in the treatment of diabetes, ulcer, piles,

coli hypertension, insanity and skin diseases.

2. The pulp of Lagenaria siceraria is used as cooling,
diuretic, sedative and anti-bilious.

3. Seed is vermifuge.

4. Extracts of plants have shown antibiotic activity.

5. The juice extracted from bottle gourd leaves helps cure jaundice and reduce graying of hair.

6. The Bottle is rich source of water and minerals and are believed to possess vitamin A, C and B complex.

7. The bitter principle found in wild bottle gourds is responsible for purgative property.

8. The crushed leaves of bottle gourd are used for baldness and applied for the treatment of headaches.

9. It is believed to help the liver function in balanced condition.

10. The consumption of bottle gourd juice combined with lime juice helps treat burning sensation in urinary passage.

11. As it is rich in fiber it helps to fight constipation.

12. In summers it reduces fatigue and keeps fresh.

13. Ayurveda highly recommends this food for diabetic patients due to its low fat and fiber content.

14. The fruit is rich in Vitamin C, Zinc, iron, Thiamin thus helps in improving overall health.

15. It is considered as one of best weight loss food since it is 96% water and provides just 12 calories per 100g of saving.

16. Ayurveda recommends bottle gourd juice in treatment of acidity, indigestion and ulcers. Indian traditional medicine

Health benefits of bottle gourd (Tyagi et al., 2017) [28]

1. The leaves, stem, fruits, oil and seeds of bottle gourd are

used traditionally in the treatment of diabetes, ulcer, piles, colitis hypertension, insanity and skin diseases.

2. The pulp of Lagenaria siceraria is used as cooling, diuretic, sedative and anti-bilious.

3. Seed is vermifuge.

4. Extracts of plants have shown antibiotic activity.

5. The juice extracted from bottle gourd leaves helps cure jaundice and reduce graying of hair.

6. The Bottle is rich source of water and minerals and are believed to possess vitamin A, C and B complex.

7. The bitter principle found in wild bottle gourds is responsible for purgative property.

8. The crushed leaves of bottle gourd are used for baldness and applied for the treatment of headaches.

9. It is believed to help the liver function in balanced condition.

10. The consumption of bottle gourd juice combined with lime juice helps treat burning sensation in urinary passage.

11. As it is rich in fiber it helps to fight constipation.

12. In summers it reduces fatigue and keeps fresh.

13. Ayurveda highly recommends this food for diabetic patients due to its low fat and fiber content.

14. The fruit is rich in Vitamin C, Zinc, iron, Thiamin thus helps in improving overall health.

15. It is considered as one of best weight loss food since it is 96% water and provides just 12 calories per 100g of saving.

16. Ayurveda recommends bottle gourd juice in treatment of acidity, indigestion and ulcers. Indian traditional medicine

claims that bottle gourd acts as nerve tonic and can help improve obsessive compulsive disorder.

Traditional and medicinal uses

The bottle gourd fruit, seeds, leaves, oil are traditionally used by local people as folk medicines, cardio tonic, antidote, diuretic, cardioprotective in the treatment of diabetes, ulcer, piles, fever cough and asthma (Nadkarni KM. 1954) [59]. The fruit pulp is used as emotic, cool, purgative and sedative. The flowers are used against certain poisons. (Kritikar KR, Basu 1952) [60]. Leaf extracts are used for baldness and to treat headaches. (Rahman AS 2003) [23] Leaves with added coconut oil or salt are used for tumours and skin irritation. seed act as vermifuge roots are used in dropsy. The gourd juice if consumed with lime juice helps to treat burning sensation in urinary passage and also act as nerve tonic and help to improve obsessive compulsive disorder (OCD). It is rich in vitamin A, C, zinc, iron and B complex thus help in improving overall health.

In northern Telangana tribal communities like Gutti koyas, Lambada’s, and koyas use dry hard shells for various purposes like bottles, bowls, spoons and milk pots. In Khammam district ethnic groups are using dry shells for carrying liquor, water and honey. It is also being used for making wind and stringed musical instruments and pipes. since the beginning of their history, they had multiple uses including food, toys, kitchen tools including wide variety crafts, including jewellery, dishes and wide variety of decorations using carving and other techniques. (Summit G, Widess 1999) [61]
Table 4: Ethnobotanical applications in cucurbits (Habibur 2003) [39]

<table>
<thead>
<tr>
<th>System</th>
<th>Lagenaria Siceraria</th>
<th>Cucurbita (pumpkin)</th>
<th>Cucumis sativus (cucumber)</th>
<th>Momordica Charantia</th>
<th>Bittermelon</th>
<th>Sechium Edule</th>
<th>Citrullus Lanatus</th>
<th>Trichosanthes Cucumerina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections</td>
<td>Alopecia</td>
<td>Sore, boil</td>
<td>Rheumatism</td>
<td>Tumor wound</td>
<td>Fever</td>
<td>Measles</td>
<td>Smallpox</td>
<td>Verminfite</td>
</tr>
<tr>
<td>Gastro</td>
<td>Adenopathy</td>
<td>Purgative</td>
<td>Lithontriptic</td>
<td>laxative</td>
<td>Antihelmintic</td>
<td>Diuretic</td>
<td>verminfite</td>
<td>Dupepsia dropsy</td>
</tr>
<tr>
<td>CNS</td>
<td>Headache</td>
<td>Toothache</td>
<td>Insanity</td>
<td>convulsion</td>
<td>Nerve</td>
<td>Refrigerant</td>
<td>Demulcent</td>
<td>Emetic</td>
</tr>
<tr>
<td>Genital</td>
<td>Drosy</td>
<td>Litholytic</td>
<td>lithntriptic</td>
<td>Diuretic</td>
<td>Hyperglycemia</td>
<td>Orchitis</td>
<td>Kidney</td>
<td>Piles stone</td>
</tr>
<tr>
<td>Respiratory</td>
<td>Asthma</td>
<td>Cough</td>
<td>Coryza cough</td>
<td>Asthma</td>
<td>cold</td>
<td>Pertussis</td>
<td>Asthma</td>
<td>Astham</td>
</tr>
<tr>
<td>Immuno</td>
<td>Cancer</td>
<td>Tetanus</td>
<td>Scrofula</td>
<td>Tumour</td>
<td>Tumour</td>
<td>Hemaglutillant</td>
<td>Eczema Polypos leprosy</td>
<td>Tetanus</td>
</tr>
<tr>
<td>Skin</td>
<td>Leuconder ma</td>
<td>Anascarca</td>
<td>Pimple</td>
<td>wound</td>
<td>Smallpox</td>
<td>Boil</td>
<td>Wart</td>
<td>Eczema Sunstroke</td>
</tr>
<tr>
<td>Poison</td>
<td>Antidote</td>
<td>Alexiteric</td>
<td>Antidote</td>
<td>Alexiteric</td>
<td>Insectide</td>
<td>Bite</td>
<td>Parasite</td>
<td>Alcholism</td>
</tr>
<tr>
<td>ENT</td>
<td>Gum</td>
<td>Hoarssness</td>
<td>Cattarch</td>
<td>Eye</td>
<td>Snuff</td>
<td>Ital</td>
<td>Coryza</td>
<td>Hoarssness</td>
</tr>
<tr>
<td>Nutr</td>
<td>Antibiotic</td>
<td>Tonic</td>
<td>Wart</td>
<td>Tonic</td>
<td>Hemostat</td>
<td>Longevity</td>
<td>Tonic</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Pharmacology of bottle gourd

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Property</th>
<th>Test mode</th>
<th>Dose concentration method</th>
<th>Mechanism of action</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Diuretic activity</td>
<td>Adult wistar rats</td>
<td>Animals were divided into 2 groups on day of experiment first group with LSJE and second group treated with frusemide at (20mg/kg, Lp) kept at room temp (25±0.5 °C) for 24 hrs.</td>
<td>Study involved notable reduction in blood glucose levels, total cholesterol level (17.8%) LDL-C (22.2%).</td>
<td>BV Ghule et al., (2007) [17]</td>
</tr>
<tr>
<td>2</td>
<td>Antidiabetic property</td>
<td>Diabetic patients</td>
<td>Alloxan monohydroxide (150mg/kg) was induced in single dose and rats in which hyperglycemia blood glucose level above 200mg/dl was induced for 48 hrs.</td>
<td>Experimental studies showed elevated blood glucose levels which were reduced to significant extent by EELS (of 100 and 200mg/kg).</td>
<td>C Katare et al., (2013) [63]</td>
</tr>
<tr>
<td>3</td>
<td>Antihyperglycemic Activity</td>
<td>Male albino rats</td>
<td>Administration of Triton Induced (Iso octyl polyoxy ethylene phenol at (350mg/kg) and EELS at 100 and 200 mg/kg was served for 48 hrs.</td>
<td>Cholesterol and triglycerides levels of blood increased by 3.5 and 9.5 folds by administration of triton and EELS (100 and 200mg/kg) prevented rise in cholesterol and triglycerides.</td>
<td>M Zahoor et al., (2021) [65]</td>
</tr>
<tr>
<td>4</td>
<td>Antihipperlipidemic activity</td>
<td>Adult rats</td>
<td>Administration of Triton Induced (Iso octyl polyoxy ethylene phenol at (350mg/kg) and EELS at 100 and 200 mg/kg was served for 48 hrs.</td>
<td>Experimental studies showed elevated blood glucose levels which were reduced to significant extent by EELS (of 100 and 200mg/kg).</td>
<td>A Rolnik, B Olas (2020) [66]</td>
</tr>
<tr>
<td>5</td>
<td>Cardioprotective Activity</td>
<td>Adult rats</td>
<td>Administration of isoproterenol (200mg/kg) and fruit extracts of Lagenaria siceraria at 400mg/kg for 30 days in rats.</td>
<td>Experimental studies showed induced isoproterenol showed alteration in enzymes like creatinine kinase, homocysteine, and decrease in levels of serum protein.</td>
<td>A Upaganlawar, (2017) [69]</td>
</tr>
</tbody>
</table>
Conclusion

Lagenaria siceraria is well known for its Indian system of medicine. The plant sources are used as a supplement for the treatment of cardiac disease, hepatic disease, ulcers, etc. The potential activity of fruit is might be due to its phytochemical constituents present in it. Presently there is increasing interest worldwide in herbal medicines accompanied by pharmacological and bioactive ingredients. Numerous drugs have entered the market through the exploration of ethnopharmacology and traditional medicine. Efforts are therefore needed to validate evidence regarding the safety and practices of ayurvedic medicines.

References

6. Chopra RN. Glossary of Indian medicinal plants.
43. Goji M, Asres K, Gemeda N, Yirsaw KJ. Screening of the antimicrobial activities of some plants used traditionally in Ethiopia for the treatment of skin disorders. Ethio Pharma J. 2006;24:130-5.
44. Ghule BV, Ghante MH, Sajoi AN, Yeole PG. Hypolipidemic and antihyperlipidemic effects of Lagenaria siceraria (Mol.) fruit extracts, 2006.

