www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2022; SP-11(6): 3059-3063 © 2022 TPI www.thepharmajournal.com Received: 27-04-2022 Accepted: 29-05-2022

Dinesh Kumar Sunwasiya

Division of Animal Genetics and Breeding, ICAR- National Dairy Research Institute, Karnal, Haryana, India

Surya Prakash Pannu Animal Reproduction, Gynaecology and Obstetrics, ICAR- National Dairy Research Institute, Karnal, Haryana,

India

Corresponding Author

Dinesh Kumar Sunwasiya Division of Animal Genetics and Breeding, ICAR- National Dairy Research Institute, Karnal, Haryana, India

Study of non-linear growth curve models parameters in sheep

Dinesh Kumar Sunwasiya and Surya Prakash Pannu

Abstract

The inheritance of non-linear growth curves is crucial for understanding evolutionary changes and developing successful breeding approaches. It is essential to identify both the hereditary and non-genetic components of development curves because they can be utilized to resolve data anomalies brought on by random environmental effects. Knowledge can therefore be applied to directly choose animals to enhance development characteristics."

Keywords: Non-linear growth curves, breeding approaches

Introduction

The inheritance of non-linear growth curves is crucial for understanding evolutionary changes and developing successful breeding approaches. It is essential to identify both the hereditary and non-genetic components of development curves because they can be utilised to resolve data anomalies brought on by random environmental effects. Knowledge can therefore be applied to directly choose animals to enhance development characteristics."

Non-linear growth curve models are crucial for evaluating the potential value of growth parameters as selection criteria for developing animal breeding programs. Animal growth models are used to determine alternative methods to improve the efficiency of livestock production and to calculate the daily nutrient requirements for animals at various stages of development (Schinckel and de Lange, 1996) ^[27]. They have also been used to estimate adult weight and increases in live body weight (Nasholm and Danell, 1990; Jenkins and Leymaster, 1993) ^[23, 15]. The yield changes brought on by this interaction over time (or as a function of age) are explained by the growth curve (Kor *et al.*, 2006) ^[19]. Age can alter the composition of tissues, cell size, weight of biological organisms, and weight or size of any organ (Eisen, 1976) ^[9]. Animal production can benefit from growth curves since they can be used to: (1) evaluate the response to different treatments throughout time; (2) investigate the link between treatments and time; and (3) identify heavier animals in a population at younger ages (Bathaei and Leroy, 1996; Freitas, 2005; Malhado *et al.*, 2009)^[6, 10, 22].

Asymptotic mature live body weight (A), folding point of growth (B), and growth rate (K) were the three characteristics that were generally analysed using different non-linear growth curve models. According to the species, breed, management methods, effects of the environment, flock size, clusters, nutritional state and selection methods, the parameters changed. The coefficient of determination (R^2) is a measure of fit quality that gives a greater value for a positive indicator of a non-linear model's ability to fit in particular breed of animals.

Brody non-linear growth curve model

Parameter (A) was reported from 20.60 in Mechari sheep by Thirunavukkarasu *et al.*, 2017 ^[29] to 70.02 in Mehraban Iranian fat-tailed sheep by Bathaei and Leroy 1998 ^[5], parameter (B) ranged from -3.16 in Marwari sheep by Yadav *et al.*, 2009 ^[31] to 1.82 in Deccani sheep by Banger *et al.*, 2017 ^[4] and parameter (K) extended from 0.00 in Mehraban sheep by Hajjati and Hossein-Zadeh 2018 ^[14] to 0.66 in Deccani sheep by Banger *et al.*, 2017 ^[4] for both sexes (average to male and female). The coefficient of determination (R²) was observed for both sexes from 82.15 per cent in West African Dwarf (WAD) sheep by Gbangboche *et al.*, 2008 ^[13] to 99.00 per cent in Mechari sheep by Thirunavukkarasu *et al.*, 2017 ^[29].

Gompertz non-linear growth curve model

Both sexes (average to male and female), parameter (A) was exhibited from 18.20 (Thirunavukkarasu *et al.*, 2017)^[29] in Mechari sheep to 54.05 (Hajjati and Hossein-Zadeh

2018) ^[14] in Mehraban sheep, parameter (B) stretched from 0.21 in Baluchi sheep (Saghi *et al.*, 2012) ^[26] to 2.79 in West African Dwarf (WAD) sheep (Gbangboche *et al.*, 2008) ^[13] and parameter (K) prolonged from 0.00 in Mehraban sheep (Hajjati and Hossein-Zadeh 2018) ^[14] to 0.39 in Thalli sheep (Waheed *et al.*, 2016) ^[30]. The coefficient of determination (R²) was ranged in different sheep breed for both sexes from 84.15 per cent (Gbangboche *et al.*, 2008) ^[13] in West African Dwarf (WAD) sheep to 99.00 per cent (Thirunavukkarasu *et al.*, 2017) ^[29] in Mechari sheep.

Logistic non-linear growth curve model

Asymptotic mature live body weight (A) was observed from 17.50 in Mechari sheep by Thirunavukkarasu *et al.*, 2017^[29] to 51.30 in Mehraban sheep by Hajjati and Hossein-Zadeh 2018^[14], folding point of growth (B) ranged from 1.33 in Sonadi sheep by Gautam *et al.*, 2018 to 11.10 in West African Dwarf (WAD) sheep by Gbangboche *et al.*, 2008^[13] and growth rate (K) stretched from 0.01 in Mehraban sheep by Hajjati and Hossein-Zadeh 2018^[14] to 0.39 in Thalli sheep by

Waheed *et al.*, 2016 ^[30] for both sexes for Logistic non-linear growth curve model in various sheep breeds. The coefficient of determination estimated for both sexes from 82.12 per cent (Gbangboche *et al.*, 2008) ^[13] in West African Dwarf (WAD) sheep to 98.09 per cent (Hajjati and Hossein-Zadeh 2018) ^[14] in Mehraban sheep.

Bertallanffy non-linear growth curve model

In Bertallanffy non-linear growth curve model for both sexes (average to male and female), (A) was revealed from 18.68 in Mechari sheep by Thirunavukkarasu *et al.*, 2017^[29] to 62.50 in West African Dwarf (WAD) sheep by Gbangboche *et al.*, 2008^[13], (B) varies from 0.45 in Sonadi sheep by Gautam *et al.*, 2018^[12] to 0.82 in Thalli sheep by Waheed *et al.*, 2016^[30] and (K) extended from 0.00 in Mechari sheep by Thirunavukkarasu *et al.*, 2017^[29] to 0.25 in Sonadi sheep by Gautam *et al.*, 2018^[12]. (R²) was seen from 84.62 per cent in West African Dwarf (WAD) sheep by Gbangboche *et al.*, 2008^[13] to 99.93 per cent in Mengali sheep by Tariq *et al.*, 2013 for both sexes.

Animal	Growth curve model	Sex	Growth curve model			Goodness of	
			parameters			fit	References
			Α	В	K	R ²	
Mehraban Iranian fat-tailed sheep	Brody	Both sexes	70.02	0.95	0.11	-	Bathaei and Leroy (1998) ^[5]
	Brody		155.95	0.97	0.00	99.91	
Daglia shaan	Gompertz	Male	113.16	2.87	0.00	99.63	
Daglic sheep	Logistic		79.93	6.81	0.00	99.37	Akbas <i>et al.</i> (1999) ^[2]
	Bertalanffy		110.61	0.78	0.00	99.71	
Kivircik sheep	Brody	Male	168.46	0.97	0.00	99.89	
	Gompertz		88.18	2.35	0.00	99.28	
	Logistic		76.33	6.25	0.00	98.67	
	Bertalanffy		97.85	0.59	0.00	99.49	
Suffelly sheep	Commonta	Male	109.80	0.01	-	-	Lewis et al., (2002) ^[20]
Suffork sheep	Gompertz	Female	86.30	0.01	-	-	
		Both sexes	46.9	0.96	0.00	82.15	
	Brody	Male	47.1	0.95	0.00	82.35	
		Female	45.5	0.96	0.00	83.59	
		Both sexes	40.9	2.79	0.00	84.15	
West African Dwarf (WAD)	Gompertz	Male	39.8	2.71	0.00	83.88	Gbangboche <i>et al.</i> , (2008) ^[13]
sheep		Female	40.1	2.85	0.00	85.79	
	Logistic	Both sexes	31.0	11.10	0.01	82.12	
		Male	31.1	10.48	0.01	81.68	
		Female	27.6	10.70	0.01	84.01	
	Bertalanffy	Both sexes	62.5	0.65	0.00	84.62	Gbangboche <i>et al.</i> , (2008) ^[13]
West African Dwarf (WAD)		Male	56.3	0.64	0.00	84.39	
sheep		Female	64.1	0.67	0.00	86.24	
	Brody	Male	62.56	0.00	-14.37	98.87	Karakus <i>et al.,</i> (2008) ^[16]
Norduz sheep	Logistic		39.73	5.80	0.02	99.58	
	Gompertz		43.41	0.01	47.90	99.39	
	Logistic		20.60	3.16	0.01	89.93	Yadav <i>et al.</i> , (2009) ^[31]
Marwari sheep	Gompertz	Both sexes	21.10	1.60	0.01	91.50	
	Brody		20.60	-3.16	0.01	89.93	
	Bertalanffy		20.88	0.66	0.01	90.96	
Konya Merino sheep	Gompertz	Male	79.10	2.20	5.58	98.00	Keskin <i>et al.</i> , (2009) ^[18]
		Female	57.00	2.70	3.89	96.00	
	Logistic	Male	70.00	5.85	2.36	96.00	
		Female	52.70	5.26	8.13	96.00	
Horro sheep	Brody	Both sexes	37.6	0.88	0.27	-	Abegaz <i>et al.</i> , (2010) ^[1]
		Male	41.8	0.90	0.25	-	
		Female	33.3	0.87	0.28	-	
Malva sheep (group 1 st)	Gompertz	Female	45.10	1.76	0.37	98.59	[2]
Malva sheep (group 2 nd)	Gompertz	Female	48.22	1.53	0.40	98.31	Aytekin <i>et al.</i> , (2010) ^[3]
	Competite	Both sexes	37.23	0.21	-	-	
Baluchi sheep	Gompertz	Male	39.33	0.22	-	-	Saghi et al., (2012) ^[26]

Table 1: Reported non-linear growth curve model parameters for sheep breeds by various researcher

		Famala	35.08	0.20			
	9	Temale	33.08	0.20	-	-	
Mengali sheep	Logistic Bertalanffy	Both sexes	36.99	-	0.01	99.43	(10)
			35.05	-	0.01	98.52	Tariq <i>et al.</i> , (2013) ^[28]
			44.29	-	0.00	99.93	
		Mala	13.08	0.52	0.01		
	Bertalanffy		43.98	0.52	0.01	-	-
		Female	40.44	0.52	0.01	-	
	C	Male	43.07	2.04	0.01	-	Behzadi <i>et al.</i> , (2014) ^[7]
	Gompertz	Female	39.68	2.04	0.01	_	
Baluchi sheep		I Cinuic	37.00	2.04	0.01		
Duratin sheep	Brody	Male	47.62	0.92	0.00	-	
	Diody	Female	43.42	0.92	0.00	-	
		Male	41 54	5.09	0.02	_	
	Logistic	Eamala	29.40	5.00	0.02		
	-	Female	38.40	5.09	0.02	-	
	Duodu	Male	78.93	0.93	0.00	98.70	-
	Brody	Female	60.79	0.90	0.00	98.60	
		Mala	74.00	1.07	0.00	07.60	
	Gompertz	Twiate	74.77	1.77	0.00)7.00	-
Hemsin sheen	<u> </u>	Female	58.77	1.79	0.00	96.80	Kopuzlu <i>et al.</i> (2014) ^[18]
riemsin sieep	.	Male	73.69	4.68	0.00	96.60	Kopužiu <i>ei ui.</i> , (2014)
	Logistic	Female	58 14	3.80	0.00	95.10	
		I Chiaic	75.74	5.00	0.00	00.00	-
	Bertalanffy	Male	/5./6	0.50	0.00	98.00	
	Dertaianity	Female	59.19	0.47	0.00	97.40	
		Male	58.18	0.92	0.03	98.90	
	Brody	Famala	31.06	0.87	0.05	08 70	-
		Temale	31.90	0.87	0.05	98.70	-
	Gomportz	Male	40.35	1.92	0.09	98.10	
	Gompertz	Female	27.46	1.68	0.11	97.70	
Madras red sheep		Mala	36.44	1 33	0.14	07.30	Ganesan <i>et al.</i> , $(2015)^{[11]}$
	Logistic	Iviale	30.44	4.55	0.14	97.30	-
	6	Female	25.99	3.41	0.17	96.70	
	D (1 CC	Male	43.09	0.49	0.07	98.40	
	Bertalanffy	Female	28 36	0.44	0.09	98.00	
	<u> </u>	D d	20.50	1.40	0.01	04.70	
	Gompertz	Both sexes	49.61	1.42	0.01	94.70	
Peruvian young llmas (Lama	Logistic		46.72	2.77	0.01	94.40	Correct et al. (2015) [8]
glama)	Bertalanffy		51.06	0.38	0.01	94.60	Cayo <i>et al.</i> , (2015) ¹⁰¹
8)	Dradu		55.97	0.70	0.00	04.60	
	ыюцу		55.87	0.79	0.00	94.00	Lupi <i>et al.</i> , (2015) ^[21]
	Brody	Male	74.94	0.95	0.00	89.80	
	Diouy	Female	51.34	0.93	0.00	91.50	
	Bertalanffy	Male	67.70	0.62	0.00	90.80	
		Twiate	07.70	0.02	0.00	20.00	
Segurena sheen		Female	48.87	0.58	0.01	92.30	
Segurena sheep	Logistic	Male	64.05	4.06	0.01	90.50	
		Female	46 58	3 65	0.01	92.10	
		I emaie	40.50	3.05	0.01	00.70	
		Male	65.23	2.87	0.01	90.70	
	Gompertz	Female	47.48	2.58	0.01	92.30	
	Gompertz		28.2	1.30	0.39	97.9	
	Drody	-	22.1	1.12	0.16	06.9	Waheed et al., (2016) ^[30]
Thalli sheep	Brody	Both sexes	55.1	1.12	0.16	90.8	
F	Bertalanffy		28.9	0.82	0.32	97.8	
	Logistic		27.1	2.53	0.60	97.3	
Deccani sheen	Brody	Both saves	30.68	1.82	0.66		Banger at al. (2017) ^[4]
Deccail sheep	Biouy	Dour sexes	30.00	1.02	0.00	04.40	Danger <i>et al.</i> , (2017)
		Both sexes	43.24	0.92	0.00	96.60	
	Brody	Male	50.17	0.93	0.00	83.20	
	-	Female	36.82	0.92	0.00	83 10	1
	Gompertz	Poth area	27.01	2.01	0.01	06.60	Rashad <i>et al.</i> , (2017) ^[25]
		Dom sexes	27.91	2.01	0.01	90.00	
		Male	30.47	2.04	0.01	96.70	
		Female	25.17	1.99	0.01	96.90	
Rahmani sheep	<u> </u>	Both saves	30.05	0.51	0.01	06.60	
		Bour sexes	30.03	0.51	0.01	90.00	
	Bertalanffy	Male	32.84	0.51	0.01	96.70	1
		Female	26.90	0.50	0.01	96.80	-
		Both sever	25.04	492	0.02	96.60	
	Logistic	Dour serves	25.04	7.72	0.02	20.00	
		Male	26.91	5.03	0.02	96.60	
		Female	22.78	4.85	0.02	96.90	
Mechari sheep Mechari sheep	Brody	Both sexes	20.60	0.87	0.00	99.00	Thirunavukkarasu <i>et al.</i> , (2017) ^[29] Thirunavukkarasu <i>et al.</i> , (2017) ^[29]
		Mala	22 61	0.00	0.00	00.00	
		iviale	23.01	0.00	0.00	99.00	
		Female	19.79	0.87	0.05	99.00	
	Gompertz	Both sexes	18.20	1.79	0.01	99.00	
		Male	20.22	1.82	0.00	08.00	
			17.45	1.02	0.00	20.00	
		remale	17.45	1.81	0.01	98.00	
	Logistic	Both sexes	17.50	3.98	0.01	96.00	
		Male	19.34	4.05	0.01	96.00	
		Fomela	1676	1.06	0.01	07.00	
		Temale	10.70	4.00	0.01	77.00	
	Bertalanffy	Both sexes	18.68	0.46	0.00	98.00	
		1 1 1	20.00	0.47	0.00	08.00	

		Female	17.92	0.46	0.00	98.00	
Mehraban sheep	Brody	Both sexes	66.90	0.95	0.00	-	Hajjati and Hossein-Zadeh (2018)
		Male	68.50	0.95	0.00	-	
		Female	65.18	0.95	0.00	-	
	Logistic	Both sexes	51.30	7.03	0.01	-	
		Male	51.95	7.01	0.01	-	
		Female	50.57	7.08	0.01	-	
	Gompertz	Both sexes	54.05	2.44	0.00	-	
		Male	54.84	2.43	0.00	-	
		Female	53.17	2.45	0.01	-	
		Both sexes	56.14	0.58	0.00	-	
	Bertalanffy	Male	57.04	0.58	0.00	-	
		Female	55.14	0.58	0.00	-	
	Brody	Male	28.35	0.85	0.19	-	Nimase <i>et al.</i> , (2018) ^[24]
		Female	25.23	0.85	0.21	-	
	Gompertz	Male	26.22	1.62	0.33	-	
		Female	23.60	1.63	0.36	-	
Madgyai sheep	Logistic	Male	25.40	3.26	0.47	-	
		Female	22.96	3.34	0.50	-	
	Bertalanffy	Male	26.68	0.43	0.29	-	
		Female	23.96	0.43	0.31		
	Gompertz	Both sexes	23.30	1.71	0.30	-	Gautam <i>et al.,</i> (2018) ^[12]
		Male	25.99	1.85	0.28	-	
Sonadi sheep		Female	20.69	1.58	0.33	-	
	Brody	Both sexes	26.03	0.87	0.16	-	
		Male	30.20	0.89	0.13	-	
		Female	22.36	0.84	0.19	-	
	Logistic	Both sexes	22.38	1.33	0.43	-	
		Male	24.74	1.52	0.42	-	
		Female	20.05	1.15	0.46	-	
	Bertalanffy	Both sexes	23.86	0.45	0.25	-	
		Male	26.88	0.48	0.23	-	
		Female	21.07	0.42	0.28	-	

References

- 1. Abegaz S, Vanwky JB, Olivier JJ. Estimation of genetic and phenotypic parameters of growth curve and their relationship with early growth and productivity in Horro sheep. Leibniz Institute of Farm Animal Biology, Dummerstorf, Germany Archiv Tierzucht. 2010;53(1):85-94.
- 2. Akbas Y, Taskin T, Demiroren E. Comparison of several models to fit the growth curves of Kivircik and Daglic male lambs. Turkish Journal of Veterinary and Animal Sciences. 1999;23:537-554.
- Aytekin I, Zulkadir U, Keskin I, Boztepe S. Fitting of different mathematic models to the growth curves of female Malya lambs weaned at two different live weights. Trends Animal Veterinary Sciences. 2010;1(1):19-23.
- 4. Banger YC, Nimase G, Nimbalkar CA, Shinde O, Lawar VS. Genetic parameter estimate for growth curve characteristics of Deccani sheep. International Journal of Livestock Research. 2017;7(5):78-86.
- Bathaei SS, Leroy PL. Genetic and phenotypic aspects of growth curve characteristics in Mehraban Iranian fattailed sheep. Small Ruminant Research. 1998;29:261-269.
- 6. Bathaei SS, Leroy PL. Growth and mature weight of Mehraban Iranian fat-tailed sheep. Small Ruminant Research. 1996;22:155-162.
- Behzadi Behreini MR, Aslaminejad AA, Sharifi AR, Simianer H. Comparison of mathematical model for describing the growth of Baluchi sheep. Journal of Agricultural Sciences Technology. 2014;14:57-68.
- 8. Cayo AWC, Huanca T, Gutierrez JP, Beltran PA.

Modelling of growth and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (*Lama glama*). Small Ruminant Research, 2015;130:81-89.

- 9. Eisen EJ. Result of growth curve analysis in mice and rate. Journal of Animal Science. 1976;42:1008-1023.
- 10. Freitas AR. Curvas de crescimento na produc ao animal. R Bras Zootec. 2005;34:786-795.
- Ganesan R, Dhanavanthan P, Balasubramanyam D, Kumarasamy P, Kiruthika. Growth Modeling and Factors Affecting Growth Treats in Madras Red Sheep. Indian Journal Animal Research. 2015;49(1):20-25.
- Gautam L, Kumar V, Waiz H, Nagda RK. Estimation of growth curve parameters using non-linear growth curve models in Sonadi sheep. International Journal of Livestock Research. 2018;8(9):104-113.
- 13. Gbangboche AB, Glele-Kakai R, Salifou S, Albuquerque LG, Lerory PL. Comparision of nonlinear growth models to describe the growth curve in West African Dwarf sheep. Animal, 2008;2(7):1003-1012.
- 14. Hojjati F, Hossein-Zadeh. Comparison of Non-linear Growth Models to Describe the Growth Curve of Mahraban Sheep. Journal of Applied Animal Research, 2018;46(1):499-504.
- 15. Jenkins TG, Leymaster KA. Estimation of maturing rates and masses at maturity for body components of sheep. Journal Animal Science. 1993;71:2952-2957.
- 16. Karakus K, Eyduran E, Kum D, Ozmedir T, Cengiz F. Determination of the growth curve and measurement interval in Norduz male lambs. Journal of Animal and Veterinary Advances. 2008;7(11):1464-1466.
- 17. Keskin I, Dag B, Sariyel V, Gokmen M. Estimation of

growth curve parameters in Konya Marino sheep. South African Journal of Animal Science, 2009, 39(2).

- 18. Kopuzlu S, Sezgin E, Esenbuga N, Bilgin OC. Estimation of growth curve characteristics of Hemsin male and female sheep. Journal of Applied Animal Research. 2014;42(2):228-232.
- Kor A, Baspinar E, Keskin S. The Determination of Growth in Akkeci (White Goat) Female Kids by various Growth Models. Czech Journal Animal Sciences. 2006;51(3):110-116.
- 20. Lewis RM, Emmans GC, Dingwall WS, Simm G. A description of the growth of sheep and its genetic analysis. Animal Science. 2002;74:51-62.
- 21. Lupi TM, Nogales S, Leon JM, Barba C, Delgado JV. Characterization of commercial and biological growth curves in Segurena sheep breed. The Animal Consortium, Animal, 2015, 1-8.
- 22. Malhado CHM, Carneiro PLS, Affonso PRAM, Souza AAO, Jr. Sarmento JLR. Growth curve in Dorper sheep crossed with local Brazilian breeds, Morada Nova, Rabo Largo and Santa Ines. Small Ruminant Research, 2009;84:16-21.
- 23. Nasholm A, Danell O. Growth and mature weight of Swedish Fine Wool Landrace ewes. I. Growth curves and estimation of individual mature weight. Acta Agric. Scan. 1990;40:71-81.
- 24. Nimase RG, Kaandalkar YB, Banger YC. Non-linear modeling for estimation of growth curve parameters in Madgyal sheep. Journal of Entomology and Zoology studies. 2018;6(2):463-465.
- 25. Rashad AMA, Ramadan TA, Mahdy AE. Comparison among Models to Describe Growth Curve of Rahmani Lambs in Relation to Ewe Milk Yeild and Composition. Egyptan Journal of Animal Production. 2017;54(2):125-135.
- 26. Saghi DA, Aslaminejad A, Tahmoorespur M, Farhangfar H, Nassiri M, Dashab GR. Estimation of genetic parameters for growth traits in Baluchi sheep using Gompertz growth curve function. Indian Journal of Animal Science. 2012;82(8):889-892.
- 27. Schinckel AP, De Lange CF. Characterization of growth parameters needed as inputs for pig growth models. Journal of Animal Science. 1996;74:2021-2036.
- Tariq MM, Iqbal F, Eyduran E, Bajwa MA, Huma ZE, Waheed A. Comparison of non-linear functions to describe the growth in Mengali sheep breed of Balochisthan. Pakisthan Journal of Zoology. 2013;45(3):661-665.
- 29. Thirunavukkarasu M, Balan C, Kathiravan G, Jeichitra V. Non-linear growth modeling in Mechari breed of sheep. Journal of Entomology and Zoology studies. 2017;5(5):2005-2008.
- Waheed A, Eyduran E, Tariq MM, Ahmad S, Hameed T, Bukhari FA. Comparision of the non-linear models defining the growth of Thalli sheep under desert conditions. Pakistan Journal of Zoology. 2016;48(2):423-426.
- Yadav DK, Singh G, Jain A, Singh S, Paul AK. Fitting of growth models and evaluation of Marwari sheep under field conditions. Indian Journal of Animal Sciences. 2009;79(12):1242-1244.