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Abstract 
Genome editing especially CRISPR/Cas9 is a suite of state-of-the-art reproductive technologies for on 

farm genetic improvement to sustain germline of economically important livestock species. As a 

consequence of specified straightforwardness and extent in functioning of CRISPR-Cas tool, it can be 

anticipated that a considerable number of genome-edited livestock will dominate over the next decade for 

the perfection not only in human beings but also in animal population. Animal breeders can now 

selectively and proficiently modify animal DNA by adopting this influential skill. This tool has aimed for 

maintaining the present beneficial potential in chief genetic characteristics of the herd and to bring in 

more desirable traits such as polled, thermo-resilient and disease tolerant animals with clear-cut genetic 

modification to eliminate harmful recessive lethal genetic mutations. Conventional breeding and 

selection methods for genetic modification are limited by available genetic design in terms of linkage and 

variant within the variety. In livestock, the CRISPR/Cas system has capability to generate single step 

alteration in pleotrophic and polymorphic traits with multiple genes and directly amend genetic mutations 

in target tissues and cells to assist conventional management. Genome editing permit animal breeders to 

bring in diverse polymorphisms in the gene pool of elite stock by conquering all spatiotemporal 

biological barriers to direct increased profits in animal based food products. 

 

Keywords: CRISPR, livestock, genetic improvement, agro-economy, designer animals 

 

Introduction 

As per the future forecast of 2050 for the purpose of global demand of food security animal-

based food products need to be increased by 70% in proportion with gradually increasing 9.8 

Million (world) human populations (FAO, 2009) [15]. This have to be achieved but with 

minimal impact on the environment with implementation of advanced technologies. Genome 

editing is a tool that allows livestock breeders to improve animal welfare, performance and 

efficiency to achieve more sustainable future for livestock and agriculture with cutting-edge 

reproductive technologies (McFariane et al., 2019). Genome editing using biomedical research 

has been recent refurbishment in the research and development field. In order to study the 

mechanism of human disease, drug development and organ transplantation, it is essential to 

construct an appropriate animal model with the growth of germline genome editing for 

scientific requirements. At present, this field has undoubtedly updated with the use of CRISPR 

system. Wellbeing and ethical issues can also be notified with the great prospective of editing 

tools for medical and agricultural purposes. Auxiliary studies to craft more genome edited 

animals can be helpful at this verge of competitive universal trades to resolve off-target 

possessions and possible jeopardy for host genome. This suite of state-of-the-art reproductive 

technologies is technically sound which applies genome editing in agricultural milieu to 

rapidly picking up productivity, fertility, sustainability, and animal safety with negligible 

infrastructure and modest fiscal assistance. The means to open ways to these benefits is 

currently in the hands of supervisory body which validate these researches to disseminate 

desired superior germplam to rural farmer’s community. 

This review article focused to enlighten the present and future scenario for editing strategy 

especially in livestock genome based on CRISPR/Cas9 and comparing results with ZFNs and 

TALENs. 

 

Genetic engineering can be defined as “The deliberate modification of the characteristics of 

an organism by manipulating its genetic material.” This is widely used in various fields such 

as research, medicine (protein/enzyme production), agriculture (crops) and industrial 
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biotechnology. Genome Editing is one technique of genetic 

engineering for targeted genetic modifications, enabling the 

knockout and knocking in of specific DNA fragments. 

Combining with reproductive technology this can be used for 

biomedical research, clinics, agriculture, disease research viz. 

constructing appropriate animal models and gene therapy.  

 For genome editing four major varieties of nucleases are 

mostly used such as Meganucleases, Zinc Finger Nucleases 

(ZFNs), Transcription Activator Like Effector Nucleases 

(TALENs) and Clustered Regularly Interspaced Short 

Palindromic Repeat-associated nuclease Cas9 (CRISPR-

Cas9). Among these variants of genome editor toolbox last 

three except meganucleases were applied for livestock species 

such as Pigs, Cattle, Sheep, Goats and Chicken for various 

purposes. Principle behind these editor tools is more or less 

similar to fabricate Double Strand DNA Breaks (DSBs) with 

specific binding and nuclease domains by any one way either 

NHEJ or HDR. First is Non-homologous End Joining 

(NHEJ), which is simple but Error Prone because of Indels 

(insertion and deletion) Nucleotide for achieving genetic 

modification by knocking out the cut sequences. Second is 

Homologous DNA Repair Template (HDRT) via the 

Homology-directed Repair (HDR) pathway (Fernandez et al., 

2017) [14]. Later one is more complex but can be used for 

knocking in the desired sequences at cut site.  

 

Important varieties of genetically modified animals 

The spectrum for Genetically Modified livestock can be 

enhanced through this paradigm shift from conventional 

breeding and selection methods to advance tools of gene 

editing via artificial selection (indexing, REML, BLUP, 

Marker Assisted and Genomic Selection) with human 

interventions to reduces the costs and increase the potential of 

preferred mutant animals viz. improved Thermoregulatory 

responses, enhanced meat quality, disease resistance and 

superior germplasm with economical production (Chen et al., 

2007) [7]. Till now these Genome Editing tool in Livestock 

were used for various modification such as  

1. Milk alteration: Reduces allergenic potential of β-

Lactoglobulin (BLG), knocking in the human lactoferrin 

(hLF) gene and high expression of human serum albumin 

variation attained by using ZFNs and TALENs (Yu et al., 

2011; Wei et al., 2018; Cui et al., 2015; Luo et al., 2016) 

[61, 52, 10, 34]. 

2. Meat production, composition and quality 

improvement: Increases muscle mass and decrease fat 

accumulation via implementing MSTN (myostatin)-

mutation in cattle, sheep, goat, swine, dogs and humans 

with ZFNs editor (Kambadur et al., 1997; Qian et al., 

2015; Wang et al., 2018; Zhang et al., 2018a) [28, 43, 49, 62].  

3. UCP1-knockin pigs: Maintain temperature in acute cold, 

increased lean meat and decreased fat deposition. 

Decreased fecal nitrogen, phosphorus outputs, increased 

growth and feed conversion rates. This progress was 

accomplished by CRISPR/Cas9 to include mouse 

adiponectin-UCP1 (Zheng et al., 2017; Zhang et al., 

2018b) [65, 63]. 

4. Disease resistance: Porcine reproductive and respiratory 

syndrome (PRRS) with single-gene i.e. CD163 deletion 

by CRISPR/Cas9 editor, Foot-and-mouth disease virus 

(FMDV) with tiny interfering RNAs by small hairpin 

RNAs (shRNAs), Bovine tuberculosis with inclusion of 

the mouse SP110 gene by TALEN to produce resistant 

swine and cattle respectively (Whitworth et al., 2016; 

Wells et al., 2017; Burkard et al., 2017; Hu et al., 2015; 

Grange 2001; Gao et al., 2017; Wu et al., 2015) [54, 53, 4, 54, 

19, 17, 56]. 

5. Animal welfare: Introduction of candidate ‘polled’ allele 

to avoid losses due to unintentional fight into dairy cattle 

with TALEN-mediated genome amendment and 

reproductive cloning (Carlson et al., 2016) [8].  

6. Bioreactors: Transgenic piglets as knocking in human 

serum albumin (HSA) by the means of CRISPR/Cas9 

(Peng et al., 2015) [42]. 

 

Up to date 

1. Xenotransplantation 

Recently University of Maryland School of Medicine (10th 

Jan 2022) publicized about revolutionary achievement in 

xenotransplantation, highlighted as a patient received a heart 

from a genetically altered pig in USA. The pig had 10 genetic 

modifications. Four genes were knocked out, or inactivated, 

including one that encodes a molecule that causes an 

aggressive human rejection response. Six human genes were 

inserted into the genome of the donor pig modifications 

designed to make the porcine organs more tolerable to the 

human immune system.  

 

2. FNCAS9 Editor-limited Uniform Detection Assay 

(FELUDA test) 

An accurate and low-cost paper-based test strip used for the 

detection of genes specific to sars-cov-2 virus (Gulati et al., 

2021). Give accurate result in 30-45 min., takes short time 

interval. Credit goes to collaborative research of CSIR and 

TATA group done by scientist team lead by Debojyoti 

Chakraborty and Souvik Maiti. Test is very much reliable as it 

has 96% sensitivity and 98% specificity. Test procedure is 

simple and can be followed by reading manual at home by 

patient or nearby family members. 

 

Comparison of various nucleases used for genome editing 

Different engineered nucleases can be compared on the 

ground of recognition location, targeting restrictions, 

specificity in terms of mismatching sequences, difficulties of 

engineering and difficulties of in vivo delivery with the aid of 

various vectors (Li et al., 2019; table 1) [32]. CRISPR/Cas9 is 

RNA based editing tool while other tools are protein based 

editors. Re-designing and re-engineering of new set of 

proteins hamper broad adoption of protein based tools (Zhao 

et al., 2019) [66]. These technical barriers are not seen in 

CRISPR system and it is a flexible and robust method with 

high editing efficiency. Success and promise of CRISPR/Cas 

are due to its virtues of having simple, elegant, customizable, 

modular and evolutionary tool for multiple targeting, 

minimize and/or eradicate off-target modification which 

makes this tool far better than others with its precise cutting 

property. 
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Table 1: Comparative Analyses of Different Engineered Nucleases 
 

Platforms ZFNs TALENs Cas9 Meganuclease 

Recognition 

sequences 

9–18 bp per monomer, 18–

36 bp per pair 

14–20 bp per monomer, 28–

40 bp per pair 

20 bp guide sequence + PAM 

sequence 
Between 14 and 40 bp 

Restriction target 
Difficult for non-G-rich 

sites 
5′ targeted base must be a T 

Targeted site should precede a 

PAM sequence 

Low efficiency for targeting 

novel sites 

Specificity 
Tolerating few positional 

mismatches 

Tolerating few positional 

mismatches 

Tolerating positional and multiple 

consecutive mismatches 

Tolerating few positional 

mismatches 

Difficulties of 

engineering 

Requiring substantial 

protein engineering 

Requiring complex 

molecular cloning methods 

Using easy cloning methods and 

oligo synthesis 

Requiring substantial protein 

engineering 

Difficulties vector 

mediated in vivo 

processing 

Relatively easy as small 

size of expression elements 

suitable for varieties of 

viral vectors 

Difficult due to the large size 

of functional components 

Commonly used SpCas9 with large 

size may cause packaging problems 

for viral vectors such as AAV 

Relatively easy as small size 

of expression elements 

suitable for varieties of viral 

vectors 

 

Historical background of CRISPR tool 

From its inception as 1st report on CRISPR (Ishino et all., 

1987) [26] till now with receiving 2020 Nobel Prize by Jennifer 

Doudna and Emmanuelle Charpentier for Chemistry this has 

emerged very rapidly with wide application from prokaryotes 

to eukaryotes such as laboratory animals and now non-human 

primates amplified from 2008 (Yang et al., 2008) [59] to 2013 

and still on revolutionary path (Kornegay, 2017) [32]. 

 

Mechanism of action 

This is a part of adaptive immune system of bacterial cell to 

combat viral infection also present in some archea, initially 

discovered in E coli cells (Barrangou et al., 2007; Horvath 

and Barrangou, 2010) [3, 23]. There are two sequences in this 

system one is spacer sequences which are complimentary 

sequences to viral genes transcribed into tracrRNA another is 

CRISPR sequences which are small repetitive palindromic 

sequences which transcribed into guided RNA (Wiedenheft et 

al., 2012) [57]. There are three phases in functioning of 

CRISPR system: adaptation, expression and interference. In 

adaptation phase short piece of invading forign DNA is 

captured and integrated into spacer element to be transcribed 

into precrRNA and finally to crRNA which form effector 

complex with Cas9 protein system. Cas9 protein has both 

helicase and nucleases activity helped by recognition 

protospacer motif (PAM) sequences for nickase activity and 

two nuclease domains HNH and RuvC perform 

complementary (target strand of DNA) and non-

complementary (non-target DNA strand) cleavage 

respectively (Gasiunas et al., 2012; Cong et al., 2013; Jinek et 

al., 2012) [16, 9, 18].  

 

CRISPR and genetic gain in livestock 
CRISPR/Cas9 Technology has a wide applications in 

molecular and cytogenetic research such as base editing, gene 

repression, gene activation, chromatin topography, epigenome 

editing, chromatin imaging (Sun et al., 2021) [44]. With the use 

of CRISPR/Cas9 system various researchers promoted a 

precise form of repair (homology-directed repair; HDR) 

to construct indels or knockouts by providing a matching 

template DNA sequence to insert (knock in) into the break in 

a cell. For this some of the appliance comprises as alteration 

of a promoter sequence or gene, inclusion of an exogenous 

reporter (viz. a fluorescent protein), or manufacturing a 

clincally pertinent SNP for a disease model. Another 

application is by cutting two replicas with the aid of the 

Cas9/sgRNA complex in which knocking in acted upon to 

repair one replica of the gene/sequence via crafting a 

knockout/indel at the second replica using the non-

homologous end joining (NHEJ) pathway. However the 

efficiency of knocking in is generally lower than knocking out 

contrast to this knocking in is frequently attempted then 

knocking out. Till now various changes with these two 

approaches either knocking in or knocking out through 

CRISPR/Cas9 editor (table 2) were accomplished for various 

purposes mostly dominated as use of animal for disease 

model studies to safeguard human beings. 

 
Table 2: Genetically modified animals with CRISPR/Cas9 

 

Species Gene Applications (Disease Model) References 

Cynomolgus KO 

PPARγ /RAG1 

p53 

DAX1 

Metabolic Diseases and Immunodeficiency 

Tumorigenesis 

AHC-HH 

Niu et al., 2014 [40];  

Chen et al., 2015 [8] 

Wan et al., 2015 [46] 

Kang et al., 2015 [29] 

Rhesus (KO) Dystrophin DMD Chen et al., 2015 [8] 

Pig 
KO 

ApoE/LDLR, 

Npc1l1 

MITF 

TPH2 

TYR 

Hoxc13G 

GTA1/CMAH/β4GalNT2 

vWF 

TP53/PTEN/APC/BRCA1/BRCA2/KRAS 

Parkin/DJ-1/PARK2/PINK1 

PERV 

CD163 

Cardiovascular and Metabolic Diseases 

Waardenburg Syndrome 

5-HT Deficiency Induced Behavior 

Abnormality 

Albinism 

ED-9 

Xenotransplantation 

vWD 

lung cancer 

PD 

Xenotransplantation 

Disease Resistance to PRRSV 

Huang et al., 2017 [25] 

Wang et al., 2015 [46] 

Li et al., 2017 [33] 

Zhou et al., 2015 [66] 

Han et al., 2017 [22] 

Butler et al., 2016 [5] 

Hai et al., 2014 [21] 

Wang et al., 2017 [48] 

Wang et al., 2016 [50] 

Yang et al., 2015 [58] 

Niu et al., 2017 [39]  

Whitworth et al., 2016 [54] 

Burkard et al., 2017 [4] 

KI CD163 (SRCR 5 domain, hCD163L1 SRCR Disease Resistance to PRRSV Wells et al., 2017 [53] 
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domain 8 homolog) 

UCP1 

Human albumin 

Huntingtin 

Meat Production, Composition and Quality 

Bioreactor 

HD 

Zheng et al., 2017 [65] 

Peng et al., 2015 [42] 

Yan et al., 2018 [57] 

Dog 

(KO) 

MSTN 

ApoE 

Dystrophin 

Improve Muscle Growth 

Cardiovascular Disease 

DMD Gene Therapy 

Zou et al., 2015 

Feng et al., 2018 [13] 

Amoasii et al., 2018 [1] 

Goat 
MSTN (KO) 

MSTN (fat-1) (KI) 
Meat Production, Composition and Quality 

Wang et al., 2018 [49] 

Zhang et al., 2018 [63] 

Cattle (KI) NRAMP1 Disease Resistance to Tuberculosis Gao et al., 2017 [17] 

KO: Knocking Out; KI: Knocking In; MSTN: Myostatin 

 

Malpotra et al., 2017 [37] had exploited knocking out property 

of the CRISPR/Cas9 method to distinguish its efficiency 

while working on Rig-I gene (retinoic acid-inducible gene-1) 

in Goat primary fibroblasts by using a NHEJ pathway. Rig-I a 

cytoplasmic sensor is an innate immune response regulator 

which we can be an asset for the management of viral 

diseases, immune disorders, cancer and other conditions in 

mammalian species. Cell screening of thirty colonies revealed 

inactivation of the Rig-I gene by deletion with two positive 

clones by simple and cost-effective CRISPR/Cas9 technique 

in primary fibroblast cell culture. Dumne, 2020 [14] studied on 

molecular cloning and characterization of cox-2 gene using 

CRISPR/Cas9 method in buffalo. PTGS2 (Prostaglandin-

endoperoxide synthase 2) gene is responsible for 

predetermination of Cyclooxygenase-2 or COX-2. This is of 

great concerned in inflammatory response as an important 

precursor of prostacyclin for mediating the conversion 

of arachidonic acid to prostaglandin H2. 

On-farm improvement by genome editing can be helpful for 

enhancing genetic gain and sustainable future for livestock in 

dam as well as in sire. Zygote electroporation (Laible, 2018; 

Miao et al., 2019; Namula et al., 2019) [31, 37, 38] or zygote 

transductions of recombinant adeno-associated viruses 

(rAAV) (Yoon et al., 2018; Bak and Porteus, 2017) [60, 2] are 

method of choice for dam’s selection and dissemination of 

superior animals. Oocytes are collected from donor females 

using ovum pick up. Collected oocytes are matured and 

fertilized in vitro. Validated genome editing reagents are 

introduced into the zygote using electroporation or 

transduction. Embryos are cultured in vitro to blastocyst 

stage. A biopsy is taken from each blastocyst, DNA is 

extracted and sequenced on-farm using a portable DNA 

sequencer. Embryos with the desired edits are transferred into 

recipient females, who give birth to genome edited offspring. 

Animals with confirmed genotypes are added into the 

breeding program to disseminate their superior genetics. 

Surrogate sire technology (SST) (Giasetti et al., 2019; Park et 

al., 2017; Wang et al., 2017) [18, 41, 50] is method of choice for 

sire selection. Spermatogonial stem cells (SSCs) can be 

collected with needle testicular biopsy from a donor male 

with suitable genetic merit. After confirming fertility of 

surrogate sires cultured cells will then be introduced into the 

breeding program to disseminate the superior germline 

genetics to the farmer. These methods have yet to be used on 

livestock for wide application into breeding herd. 

Electroporation is a well-known method introduced into 

mammalian cells, although it was only recently optimized for 

use with zygotes. Till now applied for pigs and cattle because 

of its ease ever more frequent in profit-making for stock 

animals. With handy movable equipment and minimal 

training, conjugate electroporation can be included into 

established embryo transfer programs with little or no trouble. 

Virus mediated manipulation method zygotic transduction 

was experimented only for mice and still awaited to be used 

in domestic animals. This editing procedure in genome of 

cultured zygotes using rAAV transduction is a quite 

uncomplicated practice and no prerequisite for supplementary 

equipment contrast to standard ET plans. The cost effective 

operation and level of expertise can direct this technology to 

be extensively used on farms in progressive era. Third SST 

was applied for pigs and mice hitherto valuable to pertain for 

various livestock breeds. Tropical countries viz. India, due to 

having vast and polymorphic potential of resilient dams and 

sires from local breeds can be managed properly. To produce 

beneficial production traits with surrogate sires produced 

from circulated genome-edited sperm permit livestock 

farmers to attain their goals in fewer time intervals 

(McFariane et al., 2019). Authenticated Genome prophecy 

will bring rapidity to genetic gain by reducing the generation 

gaps for each animal to cut the time of sexual maturity and 

reflect desired changes into recipient mature males from by 

transplanting altered young germline through elite SSCs 

genomes.  

Thus far rapid advancement with editing into the genome of 

large animals has come up with useful impact for agro-

economy and human as disease models, gene therapy and 

xenotransplantation. Additionally, to hasten the expansion of 

existing genome edited and modified organs, tissues and 

animals new accurate tools need to be designed for genetic 

modification in the field of agricultural including livestock 

sector, regenerative medicine and remedial appliances. 

Revolutionary scientific tool, CRISPR/Cas will be more 

suitable in its specificity and precision for on farms further 

improvements, with a significantly less frequent for of off-

target menace due to naturally occurring events such as 

spontaneous mutations in animal genomes. 

 

Ethical predicament 

There is several ethical considerations viz. lacking the proper 

watch to ensure several issues as explained, proof for desired 

alteration; accuracy to do only guided modification; consent 

and law enforcement with some uniform rules and 

regulations; and disastrous consequences such as eugenics 

and racism, weapon of mass destruction, bio-terrorism, for the 

use of these types of editing tools. As every technique has its 

own pros and cons CRISPR/Cas9 also has its merits and 

demerits. Designer individuals are debatable point resulted 

from these types of genome editing techniques. Due to ethical 

and legal implications these techniques are facing a hold to be 

used in near future because they result to make changes in 

germline of living organisms. 

 

Conclusion 

Today we are talking about designer eggs with some dietary 

modification for laying hens and designer human babies to 

cure some serious health ailments. Designer animals can also 
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be the area to be entranced with these types of advance 

biotechnology tools for various domestic animals for better 

performance in economically important traits. CRISPR/Cas9 

is a valuable tool for enhancing the animal breeding 

environment combining with genome editing and progressive 

reproductive technologies to improve the genetically heritable 

potential not only to the presented generation but also to next 

upcoming generations. 
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