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Abstract 
Balanced sampling plans excluding adjacent units or BSA (α) plans are useful for sampling from 
populations in which the nearer units provide similar observations due to natural ordering of the units in 
time or space. The ordering of units in the population may be circular. For BSA (α) plans, all the first 
order inclusion probabilities are equal whereas second order inclusion probabilities for pairs of adjacent 
units at a distance less than or equal to α are zero and constant for all other pairs of non-adjacent units 
which are at a distance greater than α. An important series of incomplete block designs called polygonal 
designs that are suitable for obtaining BSA (α) plans. Considering the blocks of polygonal designs as 
samples and the treatments as units, a BSA (α) plan can be obtained by assigning an equal probability of 
selection to the blocks. Computer algorithm which is based on linear integer programming approach 
available for generating efficient binary incomplete block designs. This algorithm has been improved for 
obtaining polygonal designs for the circular ordered structure of population units. In this study, we obtain 
new balanced sampling plans excluding adjacent units for one dimensional population with the circular 
ordering of units. 
 
Keywords: Balanced sampling plans, linear programming approach, polygonal designs 
 
1. Introduction 
In any field of scientific investigation, data need to be collected as per the objectives of the 
study. Process of data collection may involve laboratory experiments, field trials, sample 
surveys etc. Sample survey gains importance in the context when a huge population needs to 
be studied for its characteristics under the constraints of cost and/or time. Sampling is 
concerned with the selection of a subset of individuals from a population to estimate 
parameters of interest. The basic objectives of the sampling theory are the development of 
sample selection procedure and estimation method to obtain the precise estimates of 
population parameters. Simple random sampling is a basic selection procedure, which provides 
an equal chance of selection to all possible samples in the sample space. There do occur many 
situations where providing the equal probability of selection to all possible samples is not a 
very desirable feature and controls may be desirable for selection procedures which may 
provide the basis of the preferability of the samples. 
There exists some positive correlation between the neighbouring units when the population 
units are in the natural ordering in time or space. In such a situation, neighbouring units in the 
population may provide a similar response for the variable under study. While taking the 
sample from such populations, it is intuitively logical to avoid adjacent units in the sample. In 
such situations where the neighbouring units provide a similar response, Balanced Sampling 
plans Excluding Contiguous units (BSEC plans) can be used. BSEC plans, developed by 
(Hedayat et al., 1988) [4], are those sampling plans in which the pairs of contiguous units never 
appear in a sample whereas all other pairs appear equally often in the samples. Further, 
Stufken (1993) [14] developed BSA (α) plans by generalizing the concept of BSEC plans, i.e., 
excluding all those pairs of units whose distance is less than or equal to α. In BSA(α) plans, all 
the first order inclusion probabilities are equal whereas second order inclusion probabilities for 
pairs of adjacent units at a distance less than or equal to α are zero and constant for all other 
pairs of non-adjacent units which are at a distance greater than α. Here, first order inclusion 
probability (πi) is the probability that a unit i, i = 1, 2, …, N, will be included in the sample and 
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second order inclusion probability (πij) is the probability that a 
pair of units (i, j), i ≠ j= 1, 2, …, N, will be included together 
in a sample, where N denote the population size.  
In BSA (α) plans usually a circular ordering of units in the 
population is assumed, i.e., if there are N units in the 
population, units 1 and N are considered adjacent. Circular 
ordering is assumed for convenience and simplicity. The first 
and second order inclusion probabilities of BSA (α) plan for 
drawing a sample of size n from a population of size N with a 

circular ordering of units are given by πi = 
n
N

, i = 1, 2,…, N 

and πij =
( 1)

( 2 1)
n n

N N α
−

− −
, i ≠ j = 1,2,…, N if δ (i, j) > α and 

πij = 0 if δ (i, j) ≤ α, where δ(i, j) is the distance between 2 
units i and j. Here, N is the population size and n is the sample 
size. These inclusion probabilities are valid for circular 
structures only. Polygonal Designs (PDs) are presented by 
(Stufken et al. 1999) [16] and showed that PD’s are equivalent 
to BSA plans. A polygonal design is an arrangement of N 
symbols in b blocks of size n with r replications and distance 
α such that  
1. Any two symbols i, j with distance less than or equal to α 

do not appear together in a block.  
2. Any other pair of symbols i, j with a distance greater than 

α appear together in precisely λ blocks. 
 

 In this case, the parameters of the design are N, b, r, n, λ and 
α. The parameter of the design satisfies the following 
conditions. 
 Nr = bn  
 λ(N – 2 α– 1) = r (n– 1)    (1) 
 
 If α = 0, a polygonal design reduces to Balanced Incomplete 
Block (BIB) design. Let a sample of size n is taken from a 
population of size N and n treatments in each block be 
considered as the units in the sample, of the b blocks 
constitute the sample space S, then selecting one block 
randomly with the probability of selection p(s) =1/b ∀ s = 1, 
2, …, b is equivalent to BSA(α) plan. Using the parametric 
relations of polygonal designs, the first order inclusion 
probability will be, 𝜋𝜋𝑖𝑖 = 𝑟𝑟

𝑏𝑏
, i = 1, 2, …, N and second order 

inclusion probability will be, 𝜋𝜋𝑖𝑖j = 𝜆𝜆
𝑏𝑏
, ∀i ≠ j = 1, 2, …, N, for 

distance between units greater than α and 𝜋𝜋𝑖𝑖j = 0, ∀i ≠ j = 1, 2, 
…, N, for distance between units less than or equal to α.  
Most of the works on BSA plans assume one dimensional 
population though there are some works on two dimensional 
BSA plans, e.g., (Bryant et al. 2002; Wright 2008; Gopinath 
et al. 2017) [1, 17, 13]. In this article, we control ourselves to one 
dimensional population. BSEC plans were obtained under the 
assumption of circular ordering of units. Under one 
dimensional circular ordering, the distance between two units 
i and j is denoted by ( ) { }, ,i j Min i j N i jδ = − − − . 

We shall denote a balanced sampling plan excluding adjacent 
unit for population size N, sample size n and distance α in 
general as BSA (N, n, α). A BSA (N, n, α) under circular is 
represented as cBSA (N, n, α). 
For given parameters N, n and α, there is a lot of interest in 
the existence and construction of polygonal designs. A large 
number of polygonal designs are acquired by several authors 
(Hedayat et al. 1988; Colbourn and Ling 1999; Stufken et al. 
1999; Stufken and Wright 2008; Mandal et al. 2008; Mandal 

et al. 2011; Tahir et al. 2012; Gupta et al. 2012; Mandal et al. 
2014; Kumar et al. 2019) [4, 17, 2, 10, 3], but still there are gaps in 
these design parameters. Therefore, extra efforts are required 
to gain polygonal designs for given combinations of N, b and 
n. A linear programming approach is described by (Wright 
and Stufken 2008; Mandal et al. 2008) [17] to obtain smaller 
cBSAs which can also be applied to find more cBSAs. In this 
work, we obtain new cBSA with smaller support sizes using 
an algorithm developed by (Kumar et al. 2016). This 
algorithm can construct cyclic as well as non-cyclic cBSAs. 
 
2. Materials and methods 
We are going to describe the methodology for the 
construction of polygonal designs through the computer-aided 
search for the circular ordering of population units. The 
polygonal designs have a one-to-one correspondence with 
balanced sampling plans excluding adjacent units up to a 
distance of α ≥1 (BSA (α) plans). Given a polygonal design 
with N symbols in b blocks each of size n such that every pair 
of symbols which are at a distance more than α occur together 
in λ blocks, selecting a block with probability 1/b gives a 
sample of BSA (α) plan. Linear programming approach is 
exploited for obtaining linear BSA (α) plans. 
An incidence matrix N = (𝑛𝑛𝑖𝑖𝑖𝑖) of a block, the design is a 
rectangular array with N rows and b columns with entries 𝑛𝑛𝑖𝑖𝑖𝑖, 
where 𝑛𝑛𝑖𝑖𝑖𝑖 represents the number of times 𝑖𝑖𝑡𝑡ℎ treatment 
appears in 𝑠𝑠𝑡𝑡ℎ block. If all 𝑛𝑛𝑖𝑖𝑖𝑖 are either 0 or 1 then the 
corresponding block design is binary. The elements of 
incidence matrices of complete block designs are all positive 
(𝑛𝑛𝑖𝑖𝑖𝑖 ≥ 1). Incomplete block designs have incidence matrices 
with at least one element equal to zero. The matrix 𝐍𝐍𝐍𝐍′is 
termed as the concurrence matrix of the design and it is the 
properties of this matrix which determine the desirability of a 
particular design. Concurrence matrix has certain informative 
properties, particularly interesting for binary design. For any 
binary design, it can be seen that the 𝑖𝑖𝑡𝑡ℎ diagonal element of 
𝐍𝐍𝐍𝐍′is equal to 𝑟𝑟𝑖𝑖, the number of blocks in which the 
𝑖𝑖𝑡𝑡ℎtreatment occurs, and the off-diagonal element in the 
𝑖𝑖𝑡𝑡ℎrow, and the 𝑖𝑖′𝑡𝑡ℎ column is equal to the number of blocks 
in which the 𝑖𝑖𝑡𝑡ℎ and 𝑖𝑖′𝑡𝑡ℎ treatment concur. Hence, the off-
diagonal elements are usually called concurrence and denoted 
sometimes by 𝜆𝜆𝑖𝑖𝑖𝑖′.  
Under circular ordering, the concurrence matrix of the 
polygonal designs is known. For given α, the distance 
between adjacent units, r, replication of each treatment and λ, 
the number of blocks in which pair of treatment at a distance 
greater than α occurs together. The algorithm attempts to 
obtain the incidence matrix N of the required polygonal 
design. First, the user needs to put input N, b, k, λ ,α  and r 
for cBSA. In the first step, the first row of the incidence 
matrix N is obtained by randomly allotting 1 to r columns 
(blocks) out of b available columns of the N matrix. Next row 
of the N matrix is obtained in such a way that the desired 
concurrence of the second row with the first row is achieved 
and this is done with the help of an integer linear 
programming formulation. Likewise, the third row is obtained 
such that desired concurrences of the third row with the first 
row and the second row are achieved. This process is 
continued till all N rows are obtained. There may be a chance 
that at some row, no solution is obtained. In that case, one of 
the previously obtained rows are deleted and an alternative 
solution to that deleted row is obtained by using an integer 
linear programming formulation and then the current row is 
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obtained. 
 
2.1 Algorithm for generation of polygonal designs in case 
of circular ordering 
We modified the linear integer programming approach to 
obtain the polygonal designs with parameters N, b, r, n, λ and 
α  that was introduced by Mandal et al. (2014) [10]. Let b 
represents the number of blocks and 𝑟𝑟𝑖𝑖  = number of 

replications of 𝑖𝑖𝑡𝑡ℎ treatment. The steps of the algorithms are 
described in the sequel: 
 
Step 1: Construct a row vector of order 1 × b with 1 in 
randomly chosen r positions and 0 in the remaining b - r 
positions of the vector. Denote this 1 × b matrix as M [1]. Set 
𝐓𝐓 = 𝛽𝛽. The role of 𝐓𝐓 will become clear later.  
Step i (i =2, 3, …, N): Obtain weights 𝑤𝑤𝑖𝑖 = 1

𝑛𝑛𝑠𝑠
 whenever 𝑛𝑛𝑖𝑖 > 

0 and 𝑤𝑤𝑖𝑖= 1 if 𝑛𝑛𝑖𝑖 = 0, Where 𝑛𝑛𝑖𝑖 = ∑ 𝑝𝑝𝑖𝑖′𝑖𝑖
𝑖𝑖−1
𝑖𝑖′ , s = 1, 2, …, b is 

the size of the 𝑠𝑠𝑡𝑡ℎ block from (i – 1) × b matrix M(i – 1), and 
where 𝑝𝑝𝑖𝑖′𝑖𝑖 is the element at the 𝑖𝑖′𝑡𝑡ℎ row and the 𝑠𝑠𝑡𝑡ℎ column 
(𝑖𝑖′ = 1, 2,...,i -1; s = 1, 2,...,b) of M (i—1). Then, to obtain the 
row i = 2, 3, …, N of the incidence matrix N. We solve the 
following linear integer programming problem for the row i 
concerning binary decision variables 𝑥𝑥1, 𝑥𝑥2, …, 𝑥𝑥𝑏𝑏: 
 

1
Maximize  

b

s s
s

w rϕ
=

=∑
 

 
Subject to constraints 

        1

b

s i
s

x r
=

=∑
 

       1 2s sx n n s = , , …, b≤ − ∀     (2)  

         

1
 if  non-adjacent

' 1, 2,..., 1
  0   adjacent

b

i s s
s

n x (i',i)
i i

if (i',i)

λ′
=


=  = −

= 

∑

  
 
The above linear programming problem is such that there 
exists an optimal solution at Step i, or there is no optimal 
solution at Step i. 
Step ia: If there exists an optimal solution at the 𝑖𝑖𝑡𝑡ℎ step (i = 
2, 3, ..., N), then set M(i) = �𝐌𝐌

(𝑖𝑖−1)

𝐱𝐱𝑵𝑵
′ � where ( 𝑥𝑥𝑁𝑁′ = (𝑥𝑥1𝑁𝑁, 𝑥𝑥2𝑁𝑁, 

…,𝑥𝑥𝑏𝑏𝑁𝑁) denotes an optimal solution at the 𝑖𝑖𝑡𝑡ℎ step. Obtain 
weights 𝑤𝑤𝑖𝑖, s = 1, 2, …, b as before. Solve the formulation for 
the next i.  
Step ib: If there is no optimal solution at the Step i, select a 
random number m between 1 to (i -1), set 𝐓𝐓 = � 𝐓𝐓

𝐧𝐧′m
(i−1)� where 

( 1)i
m
in −

denote the mth row of the M(i-1) matrix, and then set 
( 1) 0i
m
in − ′= . We then try to obtain an alternative solution for the 

𝑚𝑚𝑡𝑡ℎ row of the incidence matrix. For this, we solve the 
following LIP formulation: 
 

1

Maximize 
b

s s
s

w rφ
=

=∑  

 
Subject to constraints 

          1

b

s m
s

x r
=

=∑
 

 

          1 2s sx n n s = , , …, b≤ − ∀                            (3) 

          

( )

( )1

, 0
1,2,

0 ,

b

i s s
j

if m i
n x and i

if m i

λ δ

δ α
′

=

′ >
 ′= =
 ′ ≤

∑
  

 

           1
  -1,  q =1, 2, …, p

b

qs s
s

t x r
=

≤ ∀∑
  

  
where 𝑡𝑡𝑞𝑞𝑖𝑖  indicates the element at the 𝑞𝑞𝑡𝑡ℎ row and the 𝑠𝑠𝑡𝑡ℎ 
column of the 𝐓𝐓 matrix. The last constraint in the formulation 
(3) ensures that the deleted rows stored in T do not appear 
again as a solution. An optimal solution to the formulation (3) 
gives an alternative solution for the 𝑚𝑚𝑡𝑡ℎ row of the incidence 
matrix. If the formulation (3) does not have a feasible 
solution, we try deleting another row. Once a solution for the 
𝑚𝑚𝑡𝑡ℎ row is obtained, we continue to obtain the 𝑖𝑖𝑡𝑡ℎ row as 
before using formulation (2). We stop when all the N rows of 
the incidence matrix are obtained. Within parameter range N 
≤ 60, n ≤ 7, α ≤ 5, the parameters of the polygonal designs 
satisfying the parametric relations of polygonal designs with 
circular ordering of units are obtained. After incorporating the 
concurrence matrix of Polygonal designs for the circular 
ordering of units, a package ibd available in R software that is 
applicable for construction of polygonal design for the above 
parameters.  
 
3. Results 
In this unit, we describe the results of polygonal designs for 
the circular ordering of population units. Polygonal designs 
for circular ordering have been found in the range R = {N ≤ 
60, n ≤ 7, λ ≤ 10, α ≤ 7}, using the modified algorithm based 
on linear integer programming approach. We divide the 
parametric range R as R = R1∪ R2 where R1= {N ≤ 50, n ≤ 7, 
λ ≤ 7, α ≤ 5} which is already covered by (Kumar et al. 2016, 
2019) and R2 present the remaining parametric range in R not 
covered by them. The parameters of the polygonal designs 
within parameter range R = {N ≤ 60, n ≤ 7, α ≤ 7 satisfying 
the parametric conditions of polygonal designs with the 
circular ordering of units are obtained. After incorporating the 
concurrence matrix of Polygonal designs for the circular 
ordering of units, for construction of polygonal design for the 
above parameters where R package ibd is applied. Above 
developed designs are compared with existing designs 
available in (Hedayat et al. 1988; Stufken 1993; See et al. 
1997; Stufken et al. 1999; Colbourn and Ling 1998; Mandal 
et al. 2008; Tahir et al. 2012) [4, 16, 15, 2, 8].  
In the above given parametric range, a total of 3812 polygonal 
designs satisfies necessary conditions of existence of 
polygonal designs. Table No.1 represents the distribution of 
these 3812 designs for α = 1, 2, 3, 4, 5, 6 and 7. It also 
represents the new designs obtained through the algorithm, 
the number of designs for which either the solution is 
unknown or non-existence is not proved.  
 

 
 

iii)  

iv) 

i) 

ii)    

iii) 

i) 

ii)    
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Table 1: Polygonal designs for circular ordering in parametric range R 

 

 α = 1 α = 2 α = 3 α = 4 α = 5 α = 6 α = 7 Total 
Number of parametric combinations 388 428 427 369 433 971 796 3812 

Number of designs obtained 113 103 86 81 80 289 279 1031 
Number of designs exists but not obtained 97 104 96 68 56 0 0 421 

Number of non-existing designs 38 75 106 127 216 538 452 1552 
Number of designs for which solution is unknown 132 137 132 89 81 134 55 760 

Number of new designs 8 9 7 4 0 10 10 48 
 
In a given above Table 1, based on changing the value of α 
parameter, we can identify that 1552 designs are non-existent 
as per the Theorem numbers 4.3(1) of Stufken et al. (2008) [17] 
and Result 2.1 of Parsad et al. (2007) [12] out of total 3812 
polygonal designs. There are 760 designs for which their 
solution is unknown (row 5) and in the third row, we can find 

that there is also 421 design which exists but not obtained. 
Out of 1031 designs obtained using the above algorithm, only 
48 designs are new whose solution was not presented in the 
literature earlier. The parameters of these 48 new observed 
designs are given in below Table 2.  

 
Table 2: Parameters of newly obtained designs under the circular ordering of population units 

 

Sl. No. v B R k λ α Remarks 
1 19 152 40 5 10 1  2 20 136 34 5 8 1  3 23 138 36 6 9 1  4 51 408 32 4 2 1  5 51 816 48 3 2 1  6 54 459 34 4 2 1  7 54 918 51 3 2 1  8 57 513 36 4 2 1  9 15 225 45 3 9 2  10 51 391 23 3 1 2  11 51 782 46 3 2 2  12 53 484 48 3 2 2  

13 53 424 32 4 2 2  
14 54 882 49 3 2 2  
15 56 476 34 4 2 2  16 59 531 27 3 1 2  17 59 531 36 4 2 2  18 51 748 44 3 2 3  19 51 1122 66 3 3 3  20 52 390 30 4 2 3  21 52 780 45 3 2 3  22 52 585 45 4 3 3  23 52 780 60 4 4 3  24 55 440 32 4 2 3  25 51 357 21 3 1 4  26 51 714 42 3 2 4  27 54 810 45 3 2 4  28 57 912 48 3 2 4  29 39 169 13 3 1 6  30 39 338 26 3 2 6 2 copies of design at Sl. No. 29 
31 39 507 39 3 3 6 3 copies of design at Sl. No. 29 
32 39 676 52 3 4 6 4 copies of design at Sl. No. 29 
33 39 845 65 3 5 6 5 copies of design at Sl. No. 29 
34 39 1014 78 3 6 6 6 copies of design at Sl. No. 29 
35 39 1183 91 3 7 6 7copies of design at Sl. No. 29 
36 39 1352 104 3 8 6 8 copies of design at Sl. No. 29 
37 39 1521 117 3 9 6 9 copies of design at Sl. No. 29 
38 39 1690 130 3 10 6 10 copies of design at Sl. No. 29 
39 45 225 15 3 1 7  40 45 450 30 3 2 7 2 copies of design at Sl. No. 39 
41 45 675 45 3 3 7 3 copies of design at Sl. No. 39 
42 45 900 60 3 4 7 4 copies of design at Sl. No. 39 
43 45 1125 75 3 5 7 5 copies of design at Sl. No. 39 
44 45 1350 90 3 6 7 6 copies of design at Sl. No. 39 
45 45 1575 105 3 7 7 7 copies of design at Sl. No. 39 
46 45 1800 120 3 8 7 8 copies of design at Sl. No. 39 
47 45 2025 135 3 9 7 9 copies of design at Sl. No. 39 
48 45 2250 150 3 10 7 10 copies of design at Sl. No. 39 
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From Table 2, it can be easily observed that out of 48 new 
designs 18 designs could be obtained by taking copies of 
other designs. In this study, the polygonal designs have been 
obtained within parameter range N ≤ 60, n ≤ 7, α ≤ 7 but the 
above-used algorithm is much generalised and it can also be 
used for obtaining polygonal designs outside this range. The 
modified algorithm is also very general and can be used for 
obtaining polygonal designs outside this parametric range N ≤ 
60, n ≤ 7, λ ≤ 10, α ≤ 7 also.  
 
4. Conclusion 
The modified algorithm has been applied to obtain polygonal 
designs in the parametric range N ≤ 60, n ≤ 7, λ ≤ 10, α ≤ 7. 
3812 designs fulfil the parametric conditions for the existence 
of a circular polygonal design. Out of these 3812 circular 
polygonal designs, 1031 designs have been obtained. It is 
found that 48 designs are new, which are not available in the 
literature. In the case of circular ordering of population units, 
the total number of unknown designs are 760 that need a 
solution. Thus, further research is needed to obtain the 
solution of these polygonal design and to prove the non-
existence of these designs. The modified algorithm is general 
and can be used for obtaining polygonal designs outside this 
parametric range for the circular ordering of units. For large 
designs, it may, however, be tome prohibitive. Therefore, 
further research efforts are required for obtaining polygonal 
designs for large population and sample sizes. 
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