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Abstract 
A pan-genome is a collection of genetic sequences distributed throughout all species or groups. The term 

was first used by Tettelin and his team while he was working on Streptococcus agalactiae strains. The 

pan-genome can be split into the core, shell, and cloud pan-genome, and classified into two groups; open 

and close, based on Heap's law. While pan-genomic research began with bacteria, advances in genome 

sequencing and assembly techniques have enabled the production of pan-genomes for eukaryotic 

organisms such as fungi, plants, and mammals. The core genome includes genes crucial for the 

organism's survival and represented as housekeeping genes, while transmission, pathogenicity, and 

immunity are usually linked with Dispensable genes. As our knowledge of genomic diversity expanded, 

it became clear that a single reference sequence was insufficient to represent the range of genomic 

variation observed within species, leading to the development and expansion of the pan-genome concept. 

Extending pan-genomic studies to higher taxonomic groups will eventually provide the resources needed 

to investigate the differences between organisms allowing for a comprehensive description of genes, their 

evolutionary history, and function. Pan-genome s will undoubtedly become widespread in the next 

decade, rendering the single-reference approach obsolete to genomic research. 
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Introduction 

The first complete sequence of the genome was performed in bacterial species (Haemophilus 

influenzae) in 1995 (Fleischmann et al., 1995) [28]. In 1996, the whole sequence of the first 

eukaryotic species was published in the organism Saccharomyces cerevisiae, followed by the 

Human genome in 2001 (Goffeau et a., 1996; Lander et al., 2001) [32, 52]. With the expanding 

number of genomes, it's time to reconsider the concept of a "reference" genome, and a new 

branch of genomics has come to light that is pan-genomics. The terminology 'pan-genome' 

comes from the word παv, which means 'whole,' whereas 'genome' refers to an organism's 

entire genes. A pan-genome is a collection of genetic sequences distributed throughout the 

entire species or group. The term was first used by Tettelin et al. in 2005 [105] while he was 

working on Streptococcus agalactiae strains. Although pan-genomics was first used to 

describe the genomic architecture of bacterial species, the notion of the pan-genome was 

quickly adopted by plant and animal scientists, resulting in more than 20 eukaryotic pan-

genome studies to date (Richard, 2020) [87].  

Bacterial genomes range from 0.6 to 8.0 megabases (Mb) and encode 600-6000 proteins on 

average. The presence of coding genes dominates the bacterial genome; that's why the 

bacterial genome is the choice for the pan-genomics analysis. However, the term evolved 

when pan-genome research expanded to include plants and animals. Two definitions of the 

pan-genome have evolved to handle the variations between bacterial and eukaryotic genomes. 

The sequence-centric approach entails that the pan-genome is the entire set of non-redundant 

sequences found in all individuals. In contrast, in the gene-centric approach, the pan-genome is 

the union of all the orthologous gene clusters (Mira et al., 2010) [66]. The pan-genome can be 

divided into core pan-genome, shell pan-genome, and cloud pan-genome (Medini et al., 2005) 
[63] (Figure 1). Core pan-genome comprises the genes or sequences found in all the individuals, 

shell pan-genome includes two or more strains, and cloud pan-genome consists of genes found 

only in one strain. The Cloud pan-genome is also represented as the dispensable genome by 

some authors that are the genes or sequences absent from one or more individuals (Vernikos et 

al., 2015) [110]. Cluster analysis, single-base polymorphism, copy number variations,  
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phylogenetic trees, and multiple sequence alignments are all 

classical depictions of the conservation and diversity of the 

genome. We can classify pan-genome into two groups, and 

this classification is based Heap’s law: 𝑁 = 𝑘𝑛−𝛼 ; where N 

denotes the number of gene families, n is the number of 

genomes, α is the exponential factor, and k is the 

proportionate constant (Costa et al., 2020) [20]. The 

interpretation is based on the α value. When the value of α is 

more than one, the pan-genome will be considered closed, and 

when the value of α is less and equal to one, the pan-genome 

will be called an open pan-genome. In the closed pan-

genome, the size of the pan-genome can be forecasted 

theoretically, and when the new genes are added, only a few 

gene families will be added to the lineage. In contrast to that, 

when the pan-genome is open, it is impossible to predict the 

theoretical size of the pan-genome. Escherichia coli is an 

example of a species with an open pan-genome (Hyatt et al., 

2010) [37]. 

The pan-genome can be defined in the group of genes rather 

than nucleotide sequences for prokaryotes because the 

maximum portion of DNA consists of the coding sequence. 

Genes do not only make up the majority of the portion in 

these species (usually 90% or more), but the content varies 

significantly in some bacterial species, and unique genes 

make up anywhere from 20% to 40% of the pan-genome. 

While pan-genomic research began with bacteria, advances in 

sequence analyses and assembly techniques have enabled the 

construction of pan-genome s for eukaryotic organisms such 

as fungi (McCarthy, 2019) [62], plants (Eizenga et al., 2020) 
[27], and mammals (Figure 2). Eukaryotes do not interchange 

DNA as freely as bacteria, resulting in a more stable gene 

composition. As a result, a eukaryotic pan-genome is typically 

defined as the collection of DNA sequences, not simply 

genes. For a species like humans, where coding sequences 

make up only 2% of the genome, a pan-genome made up 

entirely of coding sequences would reveal little about within-

species differences (Francis and Wörheide, 2017) [29]. 

Pathogenicity, gene-mediated resistance, and other 

phenotypes relevant to human health are often influenced by 

genes-oriented change; consequently, examining the 

dispensable versus core genomes might help to explain these 

traits (Piovesan et al., 2019) [81]. 

Here, in this review, we present an overview of the concepts 

and development of pan-genomics in different species, 

including currently available bioinformatics tools. Then, we 

discussed various applications related to this field based on 

their cumulative citation by peer-reviewed scientific 

publications. Finally, we address the challenges and future 

directions related to pan-genomics.  

 

Pan-genome analysis 

The existence of genes from certain strains and the 

identification of a core and accessory pan-genome are the 

focus of routine pan-genomic investigations (Eizenga et al., 

2020) [27]. The pan-genome assembly for various organisms 

has been made possible by the advanced techniques of 

genome sequencing. Currently, several methodologies for 

eukaryote pan-genome assembly are available, comprising de 

novo genome assembly, k-mer-based (de Bruijn graph) 

approach, and mapping and assembly (iterative assembly) 

(Figure 3). 

Assembling an organism's genome from novel smaller 

sequenced genome fragments is known as de novo genome 

assembly. Identification of Gene orthology and alignments of 

whole-genome methods can be utilized to compare assembled 

genomes (McCarthy and Fitzpatrick, 2019) [62]. This approach 

allows retrieval of all individuals' entire genome, and it can 

resolve repetitive sequences and the presence or absence of 

variants (PNVs/CNVs). There are various tools to perform the 

de novo genome assembly approach, namely Velvet (Zerbino 

et al., 2009) [113], ALLPATHS (Butler et al., 2008) [11], SOA 

Pdenovo (Li et al., 2010) [55], and Ma Su RCA (Zimin et al., 

2013) [116]. Often, De novo assemblies demand the 

construction of large and costly datasets, and technical 

defects, variations in assembly, and annotation can lead to 

false presence/absence of variants. The sequence segments are 

thoroughly mapped with the reference genome assembly in 

the iterative assembly. The remaining unmapped segments are 

extracted, assembled, further mapped, and added to the 

developing pan-genome. The updated reference sequence and 

iterative assembly between the mapping segments produce a 

unique pan-genome (Schatz et al., 2014) [61]. In this approach, 

there is no necessity for functional gene clusters (HGC) to 

find out the presence/absence of variants at each locus (Golicz 

et al., 2016) [33].  

In the k-mer-based approach, each sequence is disintegrated 

into fragments of different k lengths. The similarity or 

uniqueness of genes in a distinct clade of a species is 

represented as nodes, and the branches that connect the nodes 

are denoted as edges. A graph is constructed with the help of 

interconnected nodes and edges. A full pan-genome is 

visualized as a coloured de Bruijn graph, enabling the 

detection of regions that are shared across genomes or unique 

to a single individual (Iqbal et al., 2016) [38].  

Different tools and software have been developed in the field 

of genomics related to various applications (Saravanan et al., 

2019) [92]. Several genomic tools have been developed to 

analyze and visualize the pan-genomes across different 

species in the past few years. We have tried to summarise 

some of the important bioinformatics tools in Table 1. 

 

Factors affecting pan-genome analysis 

Pan genome analysis may influence by several factors such as 

annotation quality, orthologous gene detection, assembly 

quality, and selection of appropriate samples. Annotation of 

the complex eukaryotic genome is a difficult task. There are 

mainly two genome annotation techniques; evidence-based 

gene prediction and ar initio gene prediction. In the evidence-

based gene prediction approach, genes are annotated based on 

their transcription unit (protein product). In contrast, in the ab 

initio gene prediction approach, genes are predicted based on 

the nearby signals or signs like consensus, or f, stop codon, 

etc. MAKER is a commonly used annotation pipeline that 

combines both approaches on a single platform (Holt and 

Yandell, 2011) [36]. Orthologous gene detection aims to find 

out the functional genes across the genome of different 

species. Ortho MCL, INPARANOID, and reciprocal best 

blast hit are some software to identify the functionally 

equivalent genes (Berglund et al., 2007; Chen et al., 2007) [7, 

13]. Quality of assembly is also an essential factor in accurate 

analysis of pan-genome analysis. The total size of genome 

assembly is assessed by the approach (CEGMA) (Parra et al., 
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2007) [76]. The optimum sample selection is the utmost 

important factor influencing the pan-genome analysis. The 

choice of unrelated individuals gives more authentic results, 

while the individuals sharing recent ancestry provide the 

false-positive results of the pan-genome size. Hence, to 

construct a successful pan-genome investigation design, it is 

critical to choose appropriate individuals who reflect the 

majority of variety within a population22. On a substantial 

stage, preferable attributes of a pan-genome include 

'completeness' or possessing all essential features and 

sufficient sequence space to serve as a reference for the 

analysis of additional individuals; 'stability' or having 

uniquely recognizable features that can be investigated by 

various scientists and at distinct intervals; and 

'comprehensibility' or facilitating understanding of the 

complexities of genome frameworks across several 

individuals or species (Thorvaldsdóttir et al., 2008). 

 

Pan-genomes across trees of life 

While working on the pathogenicity of neonatal infection in 

human infants, Tetellin et al. (2005) [63] observed that the 

genetic diversity that determines the virulence of a particular 

bacterial strain is not reflected in the sequence of a single 

genome and may limit the genome-wide screening of vaccine 

candidates. To resolve this problem, they compared the 

genomes of eight Streptococcus agalactiae strains 

(Streptococcus agalactiae Type-B). Tetellin et al. found that 

nearly 80% of the genome belongs to the strain-specific 

genome (Dispensable/cloud), and the remaining portion was 

shared by all the individuals (core genome). Multiple bacterial 

species’ pan-genome analyses have been reported, and 

Bacteria have the most extended history of pan-genome 

research (Table 2). In Bacteria, the size of the core and cloud 

genomes is also linked to the manner of living. Bacteria 

associated with other bacteria of different phyla (Sympatric 

speciation) often consist of a small proportion of the core 

genome.In contrast, bacteria that live in an isolated condition 

(Allopatric speciation) possess a minor portion of the 

dispensable genome (Rouli et al., 2015) [89]. 

In Fungi, McCarthy (2019) [62] conducted the study of pan-

genome by utilizing Pan sOCT software (perl based) and 

presented pan-genomes of four model fungal species, i.e., 

Saccharomyces cerevisiae, Candida albicans, Cryptococcus 

neoformans, Aspergillus fumigatus (Table 2). Different 

studies suggested that the fungal core genome is the 

compilation of genes with ancient ancestry related to the 

various metabolic and survival functions. In contrast, 

accessory genomes are leveraged with recent genes involved 

in molecule transport (Peter et al., 2018) [80]. Pan-genome 

analyses of fungal can trace links between isolates of varying 

virulence and discover new genes involved in infection and 

host response (Plissonneau et al., 2018) [82]. In plants, the pan-

genome concept was initially proposed about transposable 

elements in maize (Morgante et al., 2007) [67]. Transposable 

elements (TEs) are often associated with dispensable genes. 

Still, nowadays scientific community is focusing on protein-

coding genes, and to date, various plant species’ pan-genome 

analyses have been reported (Table 2). In plants, direct 

comparison is difficult because plant species vary in ploidy 

level and type of breeding, and species with outcrossing 

breeding plans show a significant accessory genome content 

(Tao et al., 2019) [104]. The content of the pan-genome is also 

influenced by artificial selection and reproductive strategies 

(complementarity and heterosis) (Liu et al., 2020) [58]. 

The first study of pan-genomics in animals was conducted on 

Humans in that newly assembled de novo sequences of 

African and Asian populations were compared with already 

existing human reference genome assembly (Li et al., 2010) 
[55]. Identification of 162 National Center for Biotechnology 

Information (NCBI) human Ref Sew has been done, and 5 Mb 

of novel sequences was identified in both assemblies. Two 

more Human pan-genome studies were published with 275 

individuals of Han Chinese populations (Duan et al., 2019) [24] 

and 910 of the African population (Sherman et al., 2019) [119]. 

These studies have concluded that three factors may influence 

the pan-genomic analysis: difference in the genetic makeup of 

individuals in the population, methodology used (de novo 

assemblies/ Iterative assemblies/ k-mer-based assemblies), 

and the number of sequences individuals in the population. 

Besides humans, geneticists are also focusing on the pan-

genome studies on different livestock. In this review, we have 

tried to compile all the studies on livestock that have been 

conducted to date.  

 

Towards livestock pan-genome  

Pig (Sus scrofa) was the first livestock species to conduct pan-

genome analysis. Tian et al. (2019) [107] constructed the 

sequence map from a combined approach of Hi-C data and de 

novo assembly by compiling the 12 porcine breeds (Breeds 

originating in China and Europe) (Supplementary Table 1). 

As a result, they found that about 3% of constitutive 

sequences of the whole genome (~72 Mb) were missed in the 

reference genome assembly (Sscrofa11.1). The TIG3 gene has 

been found in further analysis, which is associated with fatty 

acid metabolism. By combining the HTML, Java, and various 

scripts, one web-based interface pan-genome server 

(PIGPAN), was developed to utilize all the resources related 

to pig breeding, genetic diversity, and other biomedical 

research (animal.nwsuaf.edu.cn/code/index.php/panPig). In 

goats, a pan-genomic study was done by Li et al. in 2019 by 

retrieving the ten assemblies of different breeds from the 

publically available dataset NCBI caprine genome assembly 

(Supplementary Table 1). These assemblies were compared 

with pre-existing goat reference assembly ARS1 and 

constructed a pan-genome. As a result, it was found that 

24,414 novel SNPs were recovered per individual, and the 

mapping rate was improved by 1.15%. A total of 38.3 Mb 

sequences were identified that were absent in ARS1. Further, 

for data visualization, one web-based database has been built 

(Goat pan-genome web interface) 

(http://animal.nwsuaf.edu.cn/panGoat) to retrieve various 

kinds of information like the diversity parameters, gene 

annotation, and expression level information of the pan-

sequences as well as the whole pan-genome. 

The advent of Next Generation Sequencing, SNP genotyping 

platforms and simultaneous reduction in the cost of 

sequencing had opened the door to genomic research in farm 

animals (Saravanan et al., 2022a) [95]. Since the reference 

assembly is constructed only by utilizing the single breed 

(Hereford), reference genomes are defective, deficient in 

informative SNPs, and inadequate to reveal the true genomic 

relevance of the population (Supplementary Table 1). The 
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Animal Genomics team at ETH Zurich constructed the first 

bovine pan-genome graph (Crysnanto, 2021) [21]. This cattle 

pan-genome combined the six reference bovine genomes 

(Angus, Brahman, Brown Swiss, Hereford, Highland, and 

Yak) and found the other 70,329,827 bases and 83,250 

polymorphic sites. Further, the researchers explored the 

messenger RNAs (transcripts of the function genes) to find 

out the novel functional genes that are biologically 

significant. The number of genes was associated with immune 

function (Leukocyte immunoglobulin-like receptor A5). This 

pan-genome graph may lead to substantial refinement of 

existing reference genome assembly. Recently, Li et al. 

(2021) [54] attempted to assemble the ovine pan-genome graph 

from 13 genetically diverse sheep breeds utilizing the long-

read sequencing (Pac Bio and Hi Fi). They demonstrated the 

13,419 multi allelic variations, 7028 divergent alleles, and 

142593 in dells. However, this paper is still in the preprint 

stage and has not yet been peer-reviewed. 

 

Applications 

The information acquired from reference genome assembly 

can be applied in several different genomic applications like 

Admixture analysis (Pal et al., 2022) [70, 71], breed-specific 

SNP panels (Kumar et al., 2019; Kumar et al., 2021a; 

8.Kumar et al., 2021b) [45, 93, 97], copy number variations 

(Kumar et al., 2021c) [49], rare SNPs with intermediate 

frequencies (Kumar et al., 2021d) [50] and selection signature 

analysis (Saravanan et al., 2020a; Saravanan et al., 2021b, 

Rajawat et al., 2022a, Rajawat et al., 2022b) [118, 97, 72, 85]. 

Using different reference assemblies, different SNP chips 

have been developed in recent years (Panigrahi et al., 2022) 
[74]. These SNP BeadChips have versatile applications in the 

field of genomics viz. breed composition of different 

crossbred cattle (Ahmad et al., 2020; Chhotaray et al., 2020) 
[2, 15], analysis of different diversity parameters, and haplotype 

block structures (Chhotaray et al., 2021b; Saravanan et al., 

2020b; Saravanan et al., 2021a) [17, 96, 93]. In Supplementary 

Table 2, we have mentioned the latest reference genome 

assemblies of important livestock species and their genome 

size and latest release.  

Different studies suggested that a single genome might not 

manifest the complete genomic complement and not be able 

to represent the full spectrum of divergent sequences of a 

species. Genomic studies in different individuals generally 

face the challenge of analyzing expanding genome sizes. In 

the case of other organisms, the number of the sequenced 

genome will exceed hundreds to thousands in the following 

years. Exploration of multiple genome studies rather than a 

single reference nullifies the sample bias and guarantees that 

the genetic diversity of particular species is fully reflected. In 

the subsequent segment, we will look at the different 

applications regarding pan-genomics and discuss them one by 

one. 

 

Microbial genomics 

Microbes are broadly applied and studied in different 

disciplines, including biology, biotechnology, and medicine. 

Complete knowledge of the evolutionary and functional 

genomics of microbes reveals the likelihood of developing 

therapeutic and preventive applications (Rogers et al., 2014; 

Saravanan et al., 2022b) [88, 74]. Millions of sequenced strains 

are available in sufficient detail for several clinically 

important bacterial species, allowing reference genome 

assemblies to be created (Liti et al., 2009) [57]. A new term has 

been 'Mobilome' evolved by Anani et al. (2020) [4]. The 

microbial mobilome is the collection of all the mobile genetic 

elements (MGEs) like bacteriophages, plasmids, and 

transposons (Anani et al., 2020) [4]. The genetic information 

conveyed by the mobile genetic elements can promote the 

emergence of new pathogens and drug resistance markers 

(Bacillus anthracis, Escherichia coli). Conventional vaccine 

production is time-consuming and antigenic drift may limit 

the accuracy and efficacy. The concept of reverse vaccinology 

was proposed by Rappuoli et al. (2000) [86] to predict the 

antigenic epitopes among selected vaccine candidates. This 

approach is based on the pan-genomic analysis of pathogenic 

microbes. The first vaccine production was carried out in 

Neisseria meningitides (Serotype B). Further efforts to 

generate vaccines via reverse vaccinology are ongoing on 

Acinetobacter baumannii, Streptococcus pneumonia, and 

Escherichia coli (Seib et al., 2012; Bidmos et al., 2018) [99, 9]. 

Traditionally, two main strategies have been followed for 

drug development: target-based screening and whole-cell 

screening (Hertzberg, 1993) [35]. A target must have a specific 

biological function related to survivability. Analyzing the 

pan-genome is a useful way of determining which genes code 

for important functions. As discussed previously, the core 

genes are collections of different drug targets. Several studies 

have demonstrated the pan-genome’s opportunity to discover 

theoretical therapeutic targets in pathogens such as 

Clostridium botulinum (Bhardwaj and Somvanshi, 2017) [8], 

Helicobacter pylori (Ali et al., 2015) [3], Leptospira (Zeng et 

al., 2017) [112], and Corynebacterium diphtheriae (Jamal et al., 

2017) [39]. The findings of all of these investigations could 

contribute to the emergence of therapeutic medicines, 

although more advanced pan-genomic research is required. 

 

Genome-wide association studies (GWAS) 

Next, pan-genome analysis may have the major impact on 

genome-wide association studies (GWAS). It is a 

complementary approach to the selection signatures and 

genomic selections (Kaisa et al., 2020) [43]. Genome-wide 

SNP panels are now widely available, which has facilitated 

genome-wide association studies (GWAS) for the discovery 

of novel markers linked to a range of animal attributes 

(Chhotaray et al., 2021a; Mehrotra et al., 2021a; Mehrotra et 

al., 2021b) [46, 64, 65]. The dispensable genomic regions 

connected with the critically important traits may be missing 

from the linear reference assembly and unwittingly excluded 

from correlation studies. So, for accurate analysis of 

association studies, it is important to incorporate the pan-

genome sequence in resequencing analyses (Gege et al., 2019) 
[30]. It increases the possibility of exploring genotype-

phenotype associations analyzed by the comprehensive 

variations between different breeds. Further, pan-sgenome 

analysis leads to an understanding of hereditary divergence 

and different evolutionary strategies, and in some situations, 

these findings may direct to even redefinition of species 

(Bayer et al., 2021) [5]. Genome-wide association studies 

(GWAS) are the new way to find genetic variables linked to 

important features like drug resistance or secondary 

metabolism. Individual variants such as structural variants 
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(SVs), single-nucleotide polymorphisms (SNPs), 

insertion/deletion, lack or existence of complete genes, 

annotated Gene oncology terms, and mobile genomic 

elements like integrons or prophages can all be studied in this 

way. At each level, pan-genomic techniques could be used 

(Manuweera et al., 2019) [60]. (Kehr et al., 2017) [44]. 

Understanding the functioning of novel genes and associated 

mutations in the breeding population makes it possible to 

avoid livestock loss due to embryonic lethality (Derks et al., 

2019) [23]. Specific criteria, such as an accurate data 

processing pipeline to deliver variant calling, extracting genes 

from next-generation sequencing data, annotation of 

hypothesized genes and proteins, and determining the 

coordinate system of sequenced loci, must be encountered for 

the Genome-wide association study (GWAS) to be successful 

(Dutilh et al., 2013) [25]. At each level, pan-genomic 

techniques could be used to undertake bias-free analysis. 

 

Metagenomics 

The term "metagenome" refers to the genetic content of all 

microorganisms in a given environment. It has been widely 

used to research microbial diversity in various habitats, 

including air, soil, water, plants, animals, and humans 

(Parashar et al., 2021) [117]. Pan-genomics and metagenomics 

have made significant advances in studying genetic evolution 

and function in a specific taxon or community. Some 

microbiome studies have adopted this complementary 

strategy, and such integrated pan-genomics with 

metagenomics techniques have enabled researchers to study 

the diversity and dynamics of populations in microbial 

communities (Ma et al., 2020) [119] and find the solutions for 

various non-curable diseases (Panigrahi et al., 2022a) [95]. 

Metagenome-wide association studies, for example, attempt 

to link the microbial composition of the human to both pan-

genome and metagenome (Qin et al., 2012) [83]. IMG/M is a 

genomic and metagenome-integrated comparative data 

analysis system including COG clusters, Pfam, InterPro 

domains, and KEGG pathways (Chen et al., 2017) [37]. 

PanPhlAn is a tool that uses metagenomes to identify the 

genetic content of particular strains. This program can 

determine the taxonomic profile, strain-level profile, 

functional profile, and phylogenetic profile from 

metagenomic samples and characterize pan-genome and 

metagenome at the strain level (Jun et al., 2015) [42]. Thus, 

Metagenomics has also been demonstrated to be capable of 

exposing entire species' genomes and tracing them across 

their surroundings. 

 

Phylogenomics 

Phylogenomics uses complete genome sequences to 

reconstruct the evolutionary history of a collection of species. 

It can take advantage of various signals such as sequence or 

gene content (Dutilh et al., 2007; Patra et al., 2021) [26, 78]. 

Depending on the relatedness of the included organisms, pan-

genomics will allow quick extraction of genomic features 

with an evolutionary signal, such as gene content tables, 

sequence alignments of shared marker genes, genome-wide 

SNPs, or internal transcribed spacer sequences (Ciccarelli et 

al., 2006) [18]. Phylogenomic trees representing organism or 

cellular lineages provide valuable input data for various 

biological applications, such as mapping the evolutionary 

dynamics of mutation patterns. The pan-genome has a distinct 

advantage over traditional phylogenomics. It allows only the 

best matched and well-constructed residues from a multiple 

sequence alignment (MSA) (de Been et al., 2014) [14]. In the 

model of evolutionary events, the pan-genomic representation 

of several genomes provides for a precise encoding of the 

numerous genomic changes. This opens the door to 

significant new evolutionary findings in disciplines like the 

origin of complex life and animal evolution (Williams et al., 

2013; Moroz et al., 2014). [111, 68] 

 

Challenges and future directions 

The availability of entire, well-annotated genome sequences is 

a major problem for pan-genomic research. However, by 

using machine learning, the accuracy of analysis is improved 

in different genomic analyses (Kumar et al., 2022) [91] but it is 

very difficult or even impossible, to furnish the repetitive 

regions assembly due to the short length of sequencing reads 

that leads to highly fragmented large repetitive genomes and 

limits the construction of near-complete genome sequences 

(Paten et al., 2017) [77]. The presentation and storage of the 

massive outputs of pan-genomic studies is also a constraint. 

Structural aberrations like indels and translocations may be 

unnoticed. Next, an improved annotation of the pan-genome 

products with critical functional and phenotypic information 

is another major hurdle.  

Future pan-genomes will derive from biochemical alterations 

to the sequences. Extending the pan-genomic investigation to 

higher taxonomic groups will ultimately impart the different 

resources needed to analyze individuals' differences, enabling 

a comprehensive description of genes, evolutionary history, 

and functions (Tiwary et al., 2020) [108]. Simultaneously, 

appropriate data structures and computer algorithms are being 

constructed for better pan-genome data analysis across genera 

and species. SNPs, non-coding RNA, and indels are some of 

the additional elements that will require unique approaches in 

the future (Jha et al., 2022) [41]. Until now, there has been a 

significant advancement in orthology prediction methods. 

Additional approach for analysis of system biology is RNA-

sea and transcriptomics. Transcriptomics is the study of the 

transcriptome i.e., the complete set of RNA transcripts that 

are produced by the genome, under specific circumstances or 

in a specific cell—using high-throughput methods, such as 

microarray analysis (Panigrahi et al., 2020) [15]. Several 

statistically robust techniques are required to distinguish 

orthologs and paralogs with the least false positives. A major 

challenge in this domain is better annotating the pan-genome 

with important functional and phenotypic information. Future 

pan-genomes will benefit from biochemical alterations to the 

sequences, such as hyper-methylated areas. A combination of 

gene expression and genomic data will also be necessary for 

linking the core genes with the shell and cloud genome and 

their associated expression levels. Further, the development of 

databases for pan-genome s will provide easier access to 

different datasets (Gerdol et al., 2020) [31]. 
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 Table 1. Summary of available pan-genome analysis tools 
 

Tool Description Reference 

Pan SEQ 

For analysis of core and accessory genomic regions 

Make use of NCBI resources 

It has three main modules Novel Region Finder (NRF), Core and Accessory 

Genome Finder (CAGF) and Loci Selector (LS) 

(Laing et al., 2010) [51] 

PGAP 

PGAP X 

Performs five analytical functions: cluster analysis of functional genes, pan-

genome profile analysis, genetic variation analysis of functional genes, species 

evolution analysis and function enrichment of gene clusters 

(Zhao et al., 2012) [99] 

(Zhao et al. 2012) [115] 

Get Homologue 

Performs customizable genome analysis and is targeted for non-bio informaticians 

Enables clustering of orthologous genes using multiple algorithms and filtering 

parameters 

(Contreras-Moreira and Vinuesa, 

2013) [19] 

ITEP 

Generates and curates protein families 

Curate protein families, compute similarities to externally defined domains 

Analyse gene gain and loss sand generate draft metabolic network 

(Benedict et al., 2014) [6] 

Split Mem 

Generates compressed coloured de Bruijn graph of the pan-genome  

In the graph, nodes represent sequences which are common or unique within the 

population, and edges are the branch points between common or sample specific 

sequences 

(Marcus et al., 2014) [61] 

Pan GP 

Performs scalable pan-genome analysis producing core genome, pan-genome and 

new genes curves 

Also implements two subsampling algorithms, which alleviate the computational 

burden of analysis of very high number of samples 

(Zhao et al., 2014) [114] 

LS-BSR (large-scale 

BLAST score ratio) 

Calculates a score ratio (BSR value = query/reference bit score) BLAST (Altschul 

et al. 1997) or BLAT (Kent 2002). 

The output (bit score per CDS) can be visualized as a heatmap. 

(Sahl et al., 2014) [90] 

Harvest 
It hosts three modules, namely Parsnip (core-genome analysis), Gingr (output 

visualization), and Harvest Tools (meta-analysis). 
(Treangen et al., 2014) [109] 

Micropan 

Offers a set of tools designed for pan-genome analysis written in R 

Allows integration of pan-genome and additional analyses within a single 

programming language environment 

(Snipen and Liland, 2015) [103] 

Fri-Pan 

Allows visualization of orthologous genes/gene clusters presence and absence for 

multiple strains 

Produces dendrogram and multidimensional scaling plots 

(http://drpowell.github.io/ FriPan) 

Pan-Tools 
Supports the construction and visualization of pan-genome s 

Visual representation of the pan-genome is based on generalized De Bruijn graphs 
(Sheikhizadeh et al., 2016) [100] 

Pan Viz 

Visualization tool with some analysis options. 

The input data needed is a pan-genome matrix as well as a gene ontology-based 

functional annotation of each gene group. 

(Pedersen et al. 2017) [79] 

SEQ-SEQ-pan 
Workflow for the sequential alignment of sequences to build a pan-genome data 

structure and a whole-genome alignment. 
(Jandrasits et al., 2018) [40] 

PANINI 

Implementing unsupervised machine learning with stochastic neighbour 

embedding based on the t-SNE (t-distributed stochastic neighbour embedding) 

algorithm; 

(Abudahab et al., 2019) [1] 

Pan GFR-HM 
Web-based platform integrating functional and genomic analysis. 

Collection of ~1300 complete human-associated microbial genomes exploiting. 
(Chaudhari et al., 2018) [12] 

PAN2HGENE 
Computational tool that allows identification of gene products missing from the 

original genome sequence 
(Oliveira et al., 2021) [102] 

Panakeia 
Enables comparison of strains from different ecological niches. 

For diverse and highly clonal populations 
https://github.com/BioSina/Panakeia 

 

Table 2: Studies of pan-genomes in different organisms reported to date 
 

Organism Species 
Genome 

size 
Number Core genome (%) Detection method Additional information 

Bacteria 

 

Chlamydia trachomatis 1.04 Mb 85 80 Homologous gene clustering Allopatric 

Rickettsia 

prowazekii 
1.1 Mb 10 8 Homologous gene clustering Allopatric 

Mycobacterium 

tuberculosis 
4.4 Mb 168 78 Homologous gene clustering Allopatric 

Bacillus anthracis 5.2 Mb 50 51 Homologous gene clustering Allopatric 

Streptococcus 

pneumoniae 
2.2 Mb 52 31 Homologous gene clustering Sympatric 

Hemophilus influenzae 1.8 Mb 55 33 Homologous gene clustering Sympatric 

Escherichia coli 4.6 Mb 633 8 Homologous gene clustering Sympatric 

Clostridium botulinum 3.9 Mb 46 5 Homologous gene clustering Sympatric 

Fungi 

 

Saccharomyces 

cerevisiae 
12 Mb 1011 63 ORF sequence similarity Single-cell organism 

Candida albicans 15 Mb 34 91 Synteny SCP commensalism 

Cryptococcus neoformans 9 Mb 25 8 Synteny SCP commensalism 
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Aspergillus fumigatus 29 Mb 2 83 Synteny SCP commensalism 

Parastagonospora spp. 40 Mb 33 40 HCG Plant pathogen 

Zymoseptoria 

tritici 
40 Mb 5 58 HCG Plant pathogen 

Plants 

 

Brassica oleracea 650 Mb 10 8 Read mapping Outcrossing crop 

Glycine soya 1 Gb 7 49 HGC Outcrossing crop 

Oryza sativa 430 Mb 3 92 
Intersection of gene 

coordinates 
Outcrossing crop 

Solanum lycopersicum 950 Mb 725 74 Read mapping Outcrossing crop 

Triticum aestivum 17 Gb 19 64 Read mapping Outcrossing crop 

Zea mays 2.4 Gb 503 39 Read mapping Outcrossing crop 

Helianthus annus 3 Gb 493 83 Sequence similarity Outcrossing crop 

Human 

Homo sapiens 3.2 Gb 2 86 additional gene - Asian and African genome 

Homo sapiens 3.2 Gb 910 - - African descent 

Homo sapiens 3.2 Gb 185 97 Read mapping Han Chinese Individuals 

Livestock Sus scrofa 2.7 Gb 9 
1737 additional 

gene 
- European and Chinese breeds 

 Sus scrofa 2.7 Gb 12 - de novo assembly and Hi-C European and Chinese breeds 

 Capra hircus - 
10 caprice 

assemblies 

38.3 Mb 

additional 

sequences 

de novo assembly and re 

sequencing 
NCBI data 

 Bos taurus - 56 
Additional 

70,329,827 bases 
Multi assembly graph 

Brown Swiss along with five 

other breeds 

 Ovis aries - 684 142,422 indels Pac Bio Hi Fi sequencing 13 diverse breeds 

 

 
 

Fig 1: Different components and types of the pan-genome  
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Fig 2: Timeline of development in pan-genomic research 

 

 
 

Fig 3: Different approaches to pan-genome assembly 
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Supplementary Table 1: The Reference assemblies used for pan-genome in different Livestock 

The assemblies used for pig pan-genome construction 
 

S. No The assemblies used for pig pan-genome construction 

1 Chinese Pig breeds (6) 

2 Tibetan 

3 Wuzhishan 

4 Jinhua 

5 Meishan 

6 Bamei 

7 Rongchang 

8 Europian Pig breeds (5) 

9 Landrace 

10 Large White Yorkshire 

11 Pietran 

12 Berkshire 

13 Hampshire 

The de novo assemblies used for goat pan-genome construction 

1 Capra hircus (ARS1) 

2 Capra hircus (CHIR2.0) 

3 Capra Siberica (CSI1.0) 

4 Ovis ammon (Argali1.0) 

5 Ovis musimon (Oori1) 

6 Ovis aries (Oar4.0) 

7 Capra aegagrus (CapAeg 1.0) 

8 Capra aegagrus (Caeg1) 

9 Ammotragus lervia (ALER1.0) 

10 Pseudois nayaur (ASM318257v1) 

The assemblies used for pig pan-genome construction 

1 Hereford 

2 Angus 

3 Highland 

4 Original Braunvieh 

5 Brahman 

6 Yak 

 
Supplementary Table 2: The Reference genome assemblies of important livestock species 

 

Animal Species 
First 

release 

Genome 

size 
Latest release Sequencing centre Reference 

Cattle57 

Bos taurus 

 

 

2009 2.86 Gb 

UMD3.1.1 (2014) University of Maryland 

Rosen et al., 2020 [124] Btau_5.0.1 (2015) 

Cattle Genome Sequencing 

International Consortium, Baylor 

College of Medicine, Texas 

ARS-UCD1.2 (2018) University of Maryland 

Sheep58,59 Ovis aries 2010 

2.71 Gb OARv4.0 (2015) 
International Sheep Genomics 

Consortium 

International Sheep 

Genomics Consortium, 

2010 [125] 

 
Oar_rambouillet_v1.0(2017) 

Oar_rambouillet_v2.0(2021) 

Baylor College of Medicine Human 

Genome Sequencing Center 
Davenport et al., 2022 [120] 

Pig60 Sus scrofa 2011 2.7 Gb Sscrofa11.1 
The Swine Genome Sequencing 

Consortium (SGSC) 
Archibald et al., 2010 [121] 

Goat61,62 Capra hircus 2013 2.58 Gb CHIR_2.0 (2015) 
International Goat Genome Consortium, 

Beijing Genomics Institute 
Dong et al., 2013 [122] 

   2.63Gb Saanen_v1 (2021) Northwest A&F University Li et al., 2021 [123] 

 

Conclusion  

In this new era, no doubt that pan genomic analysis will 

provide an excellent opportunity to find out the novel 

sequence, and there are vast applications. Pan-genome can 

help construct an improved reference genome in the different 

organisms for the thorough investigation of the core genetic 

variants. However, we are at the preliminary stage. Some 

significant concerns regarding the pan-genome analysis 

include low sequence reading accuracy, storage of massive 

data sets, reference-allele biases, and false-positive and 

negative structural variant prediction. Further advancements 

in next-generation sequencing, bioinformatics tools, and 

different biotechnological approaches will eventually resolve 

these concerns. Pan-genomic studies will become a 

mainstream approach in the next decade, leaving the single-

reference approach outdated to genomic research.  
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