The Pharma Innovation

ISSN (E): 2277-7695
ISSN (P): 2349-8242
NAAS Rating: $\mathbf{5 . 2 3}$
TPI 2021; 10(6): 1165-1172
(C) 2021 TPI
www.thepharmajournal.com
Received: 14-04-2021
Accepted: 29-05-2021

BC Das

Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India

P Tripathy

Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India

GS Sahu
Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India

AK Das

Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India

SK Swain

Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India

P Mandal

Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India

S Mohanty

Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India

D Sahoo

Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India

Corresponding Author:

BC Das
Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India

Effect of some quality traits of onion (Allium серa L.), variety and planting date on seed yield in late kharif planting under Odisha condition

BC Das, P Tripathy, GS Sahu, AK Das, SK Swain, P Mandal, S Mohanty and D Sahoo

Abstract

Quality seed is the basic and critical input of onion production. However, the seed supply is inadequate, which leads to increase in price every year. The quality is also not up to mark. The seed production in onion is very difficult phenomena. Apart from the suitable varieties, appropriate time of planting is also one of the important factors, which influences the growth, yield and quality of crop and ultimately the seed yield and quality. Odisha owing to its agro-climatic diversity has much potential in producing onion that it can meet whole of its demand and export to the other states, which need to be explored. This present study was carried out to identify a suitable variety and time of planting for quality onion seed production under Odisha condition. Healthy and disease free bold seedlings of five different varieties of onions raised by adopting standard nursery techniques were transplanted at five different dates of planting. It was observed that both the date of planting and varieties significantly influenced the plant height at three different days after planting (DAP) viz. 75, 90 and 105. Similar effect was also observed on the number of leaves per plant. The influence on the survival (\%) from seedling to bulbing and from bulbing to seed setting was also studied. According to the pooled data of both years, the highest seed yield per hectare was recorded in Arka Niketan (701.49 kg), irrespective of the effect of planting date. Similarly, irrespective of variety, the highest seed yield per hectare was recorded in the in D_{2} planting i.e., 25th September (809.51 kg) which was statistically significant from others.

Keywords: Onion, seed yield, planting date, survival percent, seed production

Introduction

Onion (Allium cepa L.) is one of the most important and oldest vegetable crops known to mankind and an integral component of culinary preparations being consumed worldwide. With the production of 21564 thousand MT of onion from an area of 1270 thousand hectares, India ranks second both in area and production after China (2016-17). But the per cent share to world production is only 19%. Apart from this, productivity of onion in India stands at only $16.11 \mathrm{t} / \mathrm{ha}$, which is lower than world average of $18.67 \mathrm{t} / \mathrm{ha}$. Though onion is grown in different times of a year, the main crop is in rabi accounting to $50-60 \%$ of total onion production and 20-25\% each in kharif and late kharif in the country. Among the various onion producing states in India, Maharashtra is leading in area and production while Gujarat in productivity. During last 35 years it is observed that in Odisha the area under production has increased three fold but the productivity has only reached to 12.0 tonnes/ha (2012-13) which is below the national and world average. The position of Odisha in the country is $12^{\text {th }}$ with production of 379.34 thousand tonnes, which shares only 1.63% to the nation (Anonymous, 2018) ${ }^{[3]}$. Out of thirty, the major onion producing districts of Odisha are Kalahandi, Bolangir, Bargarh, Nuapada, Sambalpur, Ganjam, Angul, Deogarh and Boudh (Sahoo et al. 2016) ${ }^{[10]}$. As per reports of state Agriculture and Farmers' Empower Department, the people of the state consume four lakhs metric tonnes of onion a year, whereas the net production in the state is nearly 2.7 lakh metric tonnes. So the rest quantity is imported from Maharashtra, Tamil Nadu and Andhra Pradesh every year. But the fact that will put everyone wondering is Odisha has so much potential in producing onion that it can meet whole of its demand and export to the other states. The agro-climatic diversity in the state with its high rainfall distribution over a fourmonth monsoon and reasonably moderate winter, allow growing of onion in the state. The low temperature in hilly area at higher altitude offer ideal conditions for growing off-season onion preferably during both kharif and late kharif season (Tripathy et. al. 2013) ${ }^{[11]}$.

But this is a dream yet to be fulfilled. Quality seed is the basic and critical input for achieving the desired vegetable production. Onion is usually propagated by true botanical seed except multiplier onion where crop is produced through vegetative means by bulb lets. The demand for quality onion seed is increasing (Amsalu et al., 2014) ${ }^{[1]}$. However, seed supply is inadequate, its price is increasing every year and onion seed available in the market are poor in quality. Most of the demand for onion seed is either meets by private sectors or unorganized sectors and rest is met by farmers own seed, often produced without following isolation requirement. Only 9.6 per cent of the demand is met by public sectors. The seed production in onion is very difficult phenomena. Besides selection of suitable varieties, appropriate time of planting is also one of the important factors, which influences the growth, yield and quality of crop as a climatic factor. Atmospheric temperature, humidity and day length affect the crop as well as seed yield. So, planting at different times is considered to test the suitable dates for quality seed production. In practice, two methods are followed for onion seed production i.e. seed to seed method and bulb to seed method. As seed to seed method is easy and cost effective, the farmers of Odisha should be encouraged for producing seed to meet the seed demand of the state with technical advice from government level. Thus, the present investigation was carried out to identify a suitable variety and time of planting for quality onion seed production in Odisha.

Material and Methods

Site description

This field experiment was conducted in the newly developed experimental plot of AINRP on Onion and Garlic, College of Horticulture, Odisha University of Agriculture and Technology, Chiplima, Sambalpur, Odisha, India, during the late kharif season of 2014-15 and 2015-16. The storage experiment was conducted in the Post-Harvest Management Laboratory of College of Horticulture, Odisha University of Agriculture and Technology, Chiplima, Sambalpur, Odisha during summer 2015 and 2016. Geographically Sambalpur is situated at $20^{\circ} 21^{\prime}$ North latitude and $80^{\circ} 55^{\prime}$ East longitude and 178.8 m above MSL and comes under West Central Table land agro-climatic zone of the state.

Soil type of the experimental site

The soil of experimental field was sandy loam texture with high organic carbon ($0.23 \mathrm{mgg}^{-1}$), pH (5.8), available nitrogen, phosphorous, potassium and sulphur were 230.5 kg $\mathrm{ha}^{-1}, 21.03 \mathrm{~kg} \mathrm{ha}^{-1}, 114.23 \mathrm{~kg} \mathrm{ha}^{-1}$ and 9.89 ppm , respectively. The bulk density, particle density and porosity were 1.620 $\mathrm{gcc}^{-1}, 2.056 \mathrm{gcc}^{-1}$ and 21.3% respectively.

Experimental details and treatments

The present experiment was laid out in Split-plot design (Dates of planting in main plots and varieties in sub-plots). Healthy and disease free bold seedlings of five different varieties of onions raised by adopting standard nursery techniques were transplanted at five different dates of sowing (Table 1) during the late kharif season of 2014-15 and 201516. Size of the sub-plots was $1.5 \mathrm{~m} \times 2.0 \mathrm{~m}$ and the spacing was maintained at $15 \mathrm{~cm} \times 10 \mathrm{~cm}$. All the standard intercultural operations were performed at specified stage of plant growth. The field experiment was carried out with three replications.

Table 1: Details of treatments used in the study

Main plot (Dates of planting)	Sub-plot (Varieties)
D1 $=10$ th September	V1 = Agrifound Dark Red (ADR)
D2 $=25$ th September	V2 $=$ Agrifound Light Red (ALR)
D3 $=10$ th October	V3 $=$ Bhima Shakti
D4 $=25$ th October	V4 $=$ Bhima Super
D5 $=10$ th November	V5 $=$ Arka Niketan

Observations recorded

The following observations with respect to growth yield and yield attributing characters were recorded during different growth period of the crop.

1. Plant height (cm)

At 75, 90 and 105 days after transplanting, the plant height of ten randomly selected plants was measured with the help of meter scale from ground level to tip of the longest leaf, held vertically and expressed in centimetre.

2. Number of leaves per plant

At 75,90 and 105 days after transplanting number of unfolded, green and photosynthetically active leaves per plant of 10 randomly selected plants were counted. The average values were subjected to statistical analysis.

3. Collar thickness (cm) at 75, 90 and 105 DAP

Girth of the plant at the base of 10 randomly selected plants was measured by digital calliper and average values were used for statistical analysis.

4. Survival percentage from seedling to Bulbing

Observations were recorded on daily basis for any mortality of plants from the date of planting till bulbing i.e. before appearance of seed stalk. The figure was expressed on percent basis out of 200 seedlings planted.

5. Survival percentage from Bulbing to seed setting

Mortality count continued from the date of bulbing till seed setting considering the survival of plants at bulbing as 100%. Accordingly the final plant stand was calculated and expressed in percent basis.

6. Average seed yield per plant and seed yield per hectare

Total of umbels of 10 randomly selected plants were collected, threshed and winnowed. The weight of pure seeds was taken in a precision balance. The average seed yield per plant was calculated and expressed in g. Seed yield per hectare (kg) was calculated from by multiplying the total plant population with the average seed yield per plant.

Statistical analysis

The data collected for all the characters involved under study were subjected to the statistical analysis for proper interpretation and drawing conclusion. The standard method of Analysis of Variance technique appropriate to the SplitPlot Design was adapted. The observed data was transformed to both angular and square root transformation wherever necessary. By taking the two years data a pool analysis was worked out. The treatment differences were tested by employing ' F ' test at five per cent level of significance on the basis of null hypothesis. The appropriate standard errors (S.Em. \pm) were calculated in each case and the Critical Difference (C.D.) at five per cent level of probability was
worked out to compare the two treatment means, where the treatment effects were found significant under ' F ' test. The percentage co-efficient of variation (C.V.\%) was also worked out for all the cases. Correlation analysis was calculated as per Pearson's simple correlation method using the pooled mean of different days of planting using the OPSTAT statistical software, (http://14.139.232.166/opstat/default.asp).

Results and Discussion

1. Average plant height at 75 DAP

Average plant height at 75 days after planting was highly influenced by variety $\&$ dates of planting recording a positive \& significant effect during both the years of study (Table 2). In the first year highest plant height was recorded in $\mathrm{V}_{3}(68.77$ $\mathrm{cm})$ which was highly significant follow by $\mathrm{V}_{1}(66.81 \mathrm{~cm}), \mathrm{V}_{5}$ $(66.41 \mathrm{~cm}), V_{2}(65.93 \mathrm{~cm}) \& V_{4}(65.03 \mathrm{~cm})$ where $V_{1}, V_{5} \&$ V_{2} and $V_{2} \& V_{4}$ are at par. Similarly in the second year of trial $(2015-16) V_{3}(68,58 \mathrm{~cm})$ recorded the height plant height followed by $\mathrm{V}_{5}(66.75 \mathrm{~cm})$ which are at par. Though, V_{1} resulted second position in first year, it recorded the lowest height of 63.97 cm in the second year. Finally, V_{3} maintained the highest plant height of 68.68 cm , followed by $\mathrm{V}_{5}(66.58$ $\mathrm{cm})$ which are at par and V_{4} recorded the shortest $(65.18 \mathrm{~cm})$. Further, with respect to the dates of planting is concerned, D_{1} recorded the maximum plant height of 70.61 cm which in absolutely significant over all the dates of planting followed by $\mathrm{D}_{3}(69.27 \mathrm{~cm}), \mathrm{D}_{2}(68.53 \mathrm{~cm}), \mathrm{D}_{4}(63.03 \mathrm{~cm}) \& \mathrm{D}_{5}(61.50$ $\mathrm{cm})$; the shortest height which was 5.09 cm shorter than the average height as recorded in the first year of experiment. However, $D_{3} \& D_{2}$ are at par to each other. In the second year of experiment (2015-16) dates of planting followed the same sequence as it was in the year (2014-15). Finally, the means of the two years results followed the same path depicting D_{1}; the highest $(70.06 \mathrm{~cm}) \& \mathrm{D}_{5}$ the lowest plant height $(61.38$ cm) at 75 DAP . There is an increase of 8.68 cm in plant height between D_{1} and D_{5}. The average plant height owing to dates of planting arrived at 66.39 cm .
Further interaction effect of V x D during 2014-15 also expressed significant results recording $D_{1} V_{2}(75.17 \mathrm{~cm})$; the best combination, followed by $\mathrm{D}_{1} \mathrm{~V}_{3}(71.03 \mathrm{~cm}), \mathrm{D}_{1} \mathrm{~V}_{5}(70.57$ $\mathrm{cm}), \mathrm{D}_{1} \mathrm{~V}_{4}(68.77 \mathrm{~cm})$ and $\mathrm{D}_{1} \mathrm{~V}_{1}(67.13 \mathrm{~cm})$ in which $\mathrm{D}_{1} \mathrm{~V}_{3}$, $D_{1} V_{5} \& D_{1} V_{4}$ and $D_{1} V_{5}, D_{1} V_{4} \& D_{1} V_{1}$ are found at par. In the second year of experiment $\mathrm{D}_{1} \mathrm{~V}_{2}(74.77 \mathrm{~cm})$ recorded the highest plant height and $\mathrm{D}_{1} \mathrm{~V}_{1}(64.53 \mathrm{~cm})$; the shortest. Islam and Mondal, (2005) ${ }^{[7]}$ also reported that planting dates significantly influenced the growth and seed yield of onion. Anisuzzaman et al. (2009) ${ }^{[2]}$ while studied the effects of planting time on bulb growth and seed production of onion cv. Taherpuri, observed that onion planted on $21^{\text {st }}$ November had highest plant height $(47.74 \mathrm{~cm})$ at 75 days after planting.

2. Average plant height at 90 DAP

On perusal of the data presented in Table 3, it is the evident from 2014-15 that V_{5} recorded the highest plant height of 72.49 cm followed by statistically similar $\mathrm{V}_{3}(72.48 \mathrm{~cm})$, while V_{4} recorded the shortest $(68.44 \mathrm{~cm})$ plant height. Except the statistically at par V_{5} and V_{3}, all other varieties were significantly different from each other. But in the second year, V_{3} surpassed V_{5} recording highest plant height $(71.65 \mathrm{~cm})$. On analyzing 2 years of results it is clear that finally V_{3} maintained the highest plant height $(72.06 \mathrm{~cm})$ follow by V_{5} $(71.66 \mathrm{~cm})$ and both were at par.
Similarly, the plant height at 90 DAP was significantly influenced by the dates of planting and D_{1} recorded the
highest average plant height of $74.89 \mathrm{~cm} \& 73.27 \mathrm{~cm}$ in 201415 \& 2015-16 years respectively \& D5 the lowest. However, when the mean of the two years was considered D_{1} recorded the highest plant height of 74.08 cm followed by $\mathrm{V}_{3}(72.23$ $\mathrm{cm})$ which were at par to each other.
Regarding the treatment combinations of $V \times D$; it was observed during 2014-15 that $\mathrm{D}_{1} \mathrm{~V}_{2}$ recorded the maximum plant height $(79.70 \mathrm{~cm})$ followed by $D_{1} V_{3}(76.10 \mathrm{~cm}), D_{1} V_{5}$ $(74.43 \mathrm{~cm}), \mathrm{D}_{1} \mathrm{~V}_{1}(72.47 \mathrm{~cm})$ and $\mathrm{D}_{1} \mathrm{~V}_{4}(71.77 \mathrm{~cm})$, where $D_{1} V_{2} \& D_{1} V_{3}$ and $D_{1} V_{3}, D_{1} V_{5}, D_{1} V_{1} \& D_{1} V_{4}$ were found at par. Similarly, during 2015-16 the same trend was also noticed. Finally, the mean data of both the years revealed that $\mathrm{D}_{1} \mathrm{~V}_{2}$ significantly recorded the maximum plant height $(79.90$ $\mathrm{cm})$ followed by $\mathrm{D}_{1} \mathrm{~V}_{3}(75.18 \mathrm{~cm}), \mathrm{D}_{1} \mathrm{~V}_{5}(72.77 \mathrm{~cm}), \mathrm{D}_{1} \mathrm{~V}_{4}$ $(71.43 \mathrm{~cm})$ and $\mathrm{D}_{1} \mathrm{~V}_{1}(71.13 \mathrm{~cm})$ where $\mathrm{D}_{1} \mathrm{~V}_{3} \& \mathrm{D}_{1} \mathrm{~V}_{5}$ and $D_{1} V_{5}, D_{1} V_{4} \& D_{1} V_{1}$ were statistically at par. Finally, it was observed from treatment combinations of dates of planting and varieties that $\mathrm{D}_{1} \mathrm{~V}_{2}$ significantly recorded the highest plant height (79.90 cm) while the shortest was recorded in $\mathrm{D}_{5} \mathrm{~V}_{3}$ (62.68 cm). The result of this study was also supported by Ud-deen (2008) ${ }^{[12]}$ and Islam and Mondal, (2005) ${ }^{[7]}$, who also observed significant influence of planting dates on growth of onion.

3. Average plant height at 105 DAP

It is evident from Table 4 that plant height at 105 DAP of onion was significantly affected by both the varieties \& date of planting. During the year 2014-15, V_{5} (Arka Niketan) recorded the highest plant height $(75.35 \mathrm{~cm})$ followed by V_{3} (Bhima Sakti) (74.17 cm) which were statistically at par. V_{2} (ALR) recorded the lowest plant height of 64.35 cm which was at par with $\mathrm{V}_{4} \& \mathrm{~V}_{1}$. But during 2015-16, V_{3} surpassed V_{5} though both were at par. When the mean data was taken into consideration V_{5} proved to be the promising one recording a maximum and highest plant height of 74.23 cm leaving behind $V_{3}(74.10 \mathrm{~cm})$ although both were statistically at par.
Regarding the dates of planting a significant effect was noticed in both the years of study. D_{1} recorded the highest average plant height of $74.82 \mathrm{~cm}, 73.27 \mathrm{~cm}$ and 74.04 cm in the year 2014-15, 2015-16 and average of both the years respectively. It was clearly evident that D_{1} proved to be the best date of planting in terms of average plant height was concerned and D_{5} the least in both the years of study.
When the interaction effect of variety and dates of planting was studied it was clear that $D_{1} V_{3}$ recorded the maximum plant height $(79.23 \mathrm{~cm})$ during 2014-15. Similarly, during 2015-16 $\mathrm{D}_{1} \mathrm{~V}_{2}(78.20 \mathrm{~cm})$ recorded maximum plant height followed by $\mathrm{D}_{1} \mathrm{~V}_{3}(77.43 \mathrm{~cm}), \mathrm{D}_{1} \mathrm{~V}_{5}(74.87 \mathrm{~cm}), \mathrm{D}_{1} \mathrm{~V}_{4}(68.50$ $\mathrm{cm})$ and $D_{1} V_{1}(67.33 \mathrm{~cm})$. It is evident from the mean of both the years that $\mathrm{D}_{1} \mathrm{~V}_{3}(78.33 \mathrm{~cm})$ recorded highest plant height followed by $\mathrm{D}_{1} \mathrm{~V}_{2}(77.35 \mathrm{~cm}), \mathrm{D}_{1} \mathrm{~V}_{5}(76.07 \mathrm{~cm}), \mathrm{D}_{1} \mathrm{~V}_{4}(70.40$ $\mathrm{cm})$ and $D_{1} V_{1}(68.07 \mathrm{~cm})$ where, $D_{1} V_{3}, D_{1} V_{2} \& D_{1} V_{5}$ and $D_{1} V_{4} \& D_{1} V_{1}$ were found at par.
The treatment combination between dates of planting and varieties also have pronounced effect on plant height at 105 DAP and revealed that $\mathrm{D}_{1} \mathrm{~V}_{3}(79.23 \mathrm{~cm})$ recorded maximum plant height. Similarly during 2015-16 $\quad D_{1} V_{2}(78.20 \mathrm{~cm})$ recorded maximum plant height followed by $\mathrm{D}_{3} \mathrm{~V}_{3}(78.10 \mathrm{~cm})$. The mean of both the years also found significant recording highest plant height in treatment combination $D_{3} V_{3}(78.65$ cm) while $\mathrm{D}_{5} \mathrm{~V}_{2}$ scored the shortest plant height of 59.00 cm . The results was supported by Mollah et al. (2015) ${ }^{[9]}$ and Islam and Mondal, (2005) ${ }^{[7]}$.

Table 2: Average plant height of onion at 75 DAP

	2014-2015						2015-2016						Pooled					
	V1	V2	V3	V4	V5	Mean	V1	V2	V3	V4	V5	Mean	V1	V2	V3	V4	V5	Mean
D1	67.13	75.57	71.03	68.77	70.57	70.61	64.53	74.77	69.77	70.07	68.43	69.51	65.83	75.17	70.40	69.42	69.50	70.06
D2	71.43	70.13	72.90	64.47	63.73	68.53	68.77	69.70	71.77	63.53	64.17	67.59	70.10	69.92	72.33	64.00	63.95	68.06
D3	67.23	67.93	73.23	69.20	68.73	69.27	65.90	67.40	73.93	68.07	69.00	68.86	66.57	67.67	73.58	68.63	68.87	69.06
D4	63.03	60.30	67.83	61.33	62.67	63.03	64.40	61.37	67.10	62.23	63.70	63.76	63.72	60.83	67.47	61.78	63.18	63.40
D5	65.20	55.70	58.87	61.37	66.37	61.50	56.27	58.47	60.33	62.77	68.47	61.26	60.73	57.08	59.60	62.07	67.42	61.38
Mean	66.81	65.93	68.77	65.03	66.41	66.59	63.97	66.34	68.58	65.33	66.75	66.20	65.39	66.13	68.68	65.18	66.58	66.39
	$\begin{gathered} \text { S.Em } \\ (\pm) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CD} \\ 0.05 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { CV(a) } \\ \hline(\%) \\ \hline \end{array}$	$\begin{gathered} \hline \text { CV(b) } \\ (\%) \\ \hline \end{gathered}$			S.Em \pm)	$\begin{gathered} \text { CD } \\ 0.05 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { CV(a) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { CV(b) } \\ \hline \end{array}$			$\begin{gathered} \text { S.Em } \\ (\pm) \\ \hline \end{gathered}$	$\begin{gathered} \text { CD } \\ 0.05 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CV(a) } \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CV(b) } \\ \hline \end{gathered}$		
V	0.381	1.089	2.194	2.217			0.800	2.287	3.719	4.681			0.178	0.501	5.318	1.470		
D	0.377	1.230					0.636	2.073					0.645	1.933				
V within D	1.317	3.868					2.641	7.693					1.238	3.658				
D within V	0.852	2.436					1.789	5.114					1.647	4.634				

Table 3: Average plant height of onion at 90 DAP

	2014-2015						2015-2016						Pooled					
	V1	V2	V3	V4	V5	Mean	V1	V2	V3	V4	V5	Mean	V1	V2	V3	V4	V5	Mean
D1	72.47	79.70	76.10	71.77	74.43	74.89	69.80	80.10	74.27	71.10	71.10	73.27	71.13	79.90	75.18	71.43	72.77	74.08
D2	75.00	73.10	75.00	66.67	72.20	72.39	72.13	72.37	74.40	66.63	69.97	71.10	73.57	72.73	74.70	66.65	71.08	71.75
D3	70.20	69.73	77.77	71.63	73.87	72.64	67.73	70.87	76.17	70.47	73.83	71.81	68.97	70.30	76.97	71.05	73.85	72.23
D4	68.50	66.40	71.17	66.90	71.43	68.88	66.27	64.83	70.40	67.57	68.57	67.53	67.38	65.62	70.78	67.23	70.00	68.20
D5	69.67	61.60	62.37	65.23	70.53	65.88	68.57	63.93	63.00	65.87	70.63	66.40	69.12	62.77	62.68	65.55	70.58	66.14
Mean	71.17	70.11	72.48	68.44	72.49	70.94	68.90	70.42	71.65	68.33	70.82	70.02	70.03	70.26	72.06	68.38	71.66	70.48
	$\begin{gathered} \text { S.Em } \\ (\pm) \end{gathered}$	$\begin{gathered} \hline \text { CD } \\ 0.05 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CV(a) } \\ \hline(\%) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { CV(b) } \\ \hline(\%) \\ \hline \end{array}$			$\begin{gathered} \text { S.Em } \\ (\pm) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CD } \\ 0.05 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { CV(a) } \\ (\%) \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { CV(b) } \\ \hline(\%) \\ \hline \end{array}$			$\begin{gathered} \text { S.Em } \\ (\pm) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { CD } \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { CV(a) } \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CV(b) } \\ (\%) \\ \hline \end{gathered}$		
V	0.359	1.027	3.087	1.962			0.622	1.778	2.758	3.440			0.178	0.502	5.063	1.386		
D	0.565	1.844					0.499	1.626					0.651	1.953				
V within D	1.457	4.387					2.056	5.992					1.249	3.691				
D within V	0.804	2.297					1.391	3.975					1.661	4.672				

Table 4: Average plant height of onion at 105 DAP

	2014-2015						2015-2016						Pooled					
	V1	V2	V3	V4	V5	Mean	V1	V2	V3	V4	V5	Mean	V1	V2	V3	V4	V5	Mean
D1	68.80	76.50	79.23	72.30	77.27	74.82	67.33	78.20	77.43	68.50	74.87	73.27	68.07	77.35	78.33	70.40	76.07	74.04
D2	69.00	64.27	75.83	63.17	76.27	69.71	70.30	74.40	76.73	63.60	72.47	71.50	69.65	69.33	76.28	63.38	74.37	70.60
D3	64.00	61.13	79.20	62.73	75.00	68.41	65.40	68.40	78.10	68.83	76.03	71.35	64.70	64.77	78.65	65.78	75.52	69.88
D4	61.33	62.90	73.63	63.80	74.83	67.30	64.73	63.97	72.23	65.70	70.00	67.33	63.03	63.43	72.93	64.75	72.42	67.31
D5	66.83	56.93	62.97	62.20	73.37	64.46	66.87	61.07	65.60	63.57	72.20	65.86	66.85	59.00	64.28	62.88	72.78	65.16
Mean	65.99	64.35	74.17	64.84	75.35	68.94	66.93	69.21	74.02	66.04	73.11	69.86	66.46	66.78	74.10	65.44	74.23	69.40
	S.Em (\pm)	$\begin{aligned} & \hline \text { CD } \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline \text { CV(a) } \\ \hline(\%) \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { CV(b) } \\ \hline \end{array}$			S.Em (\pm)	$\begin{aligned} & \hline \text { CD } \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { CV(a) } \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CV(b) } \\ \hline(\%) \\ \hline \end{gathered}$			S.Em \pm)	$\begin{gathered} \hline \text { CD } \\ 0.05 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { CV(a) } \\ \hline \end{array}$	$\begin{gathered} \hline \text { CV(b) } \\ \hline(\%) \\ \hline \end{gathered}$		
V	0.628	1.794	3.795	3.527			0.765	2.185	4.613	4.238			0.179	0.502	5.093	1.410		
D	0.675	2.203					0.832	2.713					0.645	1.935				
V within D	2.217	6.538					2.709	7.991					1.240	3.662				
D within V	1.404	4.012					1.710	4.886					1.649	4.640				

Table 5: No. of Leaves per plant at 75 DAP

	2014-2015						2015-2016						Pooled					
	V1	V2	V3	V4	V5	Mean	V1	V2	V3	V4	V5	Mean	V1	V2	V3	V4	V5	Mean
D1	10.30	10.83	12.40	10.97	11.10	11.12	10.33	10.83	10.33	11.23	11.33	10.81	10.32	10.83	11.37	11.10	11.22	10.97
D2	12.67	11.60	10.47	12.97	13.93	12.33	12.10	11.67	12.40	12.60	13.77	12.51	12.38	11.63	11.43	12.78	13.85	12.42
D3	13.00	12.60	11.60	12.67	11.60	12.29	12.40	11.93	12.43	12.50	12.67	12.39	12.70	12.27	12.02	12.58	12.13	12.34
D4	12.03	11.07	11.57	12.00	11.60	11.65	12.07	11.30	11.53	12.27	12.07	11.85	12.05	11.18	11.55	12.13	11.83	11.75
D5	11.87	10.80	9.70	11.47	11.33	11.03	11.87	10.87	11.63	11.73	11.97	11.61	11.87	10.83	10.67	11.60	11.65	11.32
Mean	11.97	11.38	11.15	12.01	11.91	11.69	11.75	11.32	11.67	12.07	12.36	11.83	11.86	11.35	11.41	12.04	12.14	11.76
	$\begin{gathered} \text { S.Em } \\ (\pm) \end{gathered}$	$\begin{gathered} \text { CD } \\ 0.05 \end{gathered}$	$\begin{gathered} \hline \text { CV(a) } \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \text { CV(b) } \\ (\%) \end{gathered}$			$\begin{gathered} \text { S.Em } \\ (\pm) \end{gathered}$	$\begin{gathered} \text { CD } \\ 0.05 \end{gathered}$	$\begin{array}{\|c} \hline \text { CV(a) } \\ \hline \end{array}$	$\begin{gathered} \hline \text { CV(b) } \\ \hline \end{gathered}$			$\begin{gathered} \text { S.Em } \\ (\pm) \end{gathered}$	$\begin{aligned} & \text { CD } \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { CV(a) } \\ \hline \%) \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{CV}(\mathrm{~b}) \\ (\%) \\ \hline \end{gathered}$		
V	0.079	0.225	5.989	2.605			0.113	0.323	5.589	3.700			0.071	0.201	13.334	3.323		
D	0.181	0.589					0.171	0.557					0.286	0.858				
V within D	0.392	1.210					0.450	1.352					0.540	1.599				
D within V	0.176	0.502					0.253	0.723					0.715	2.012				

4. No. of leaves per plant at 75 DAP

Varieties and date of planting expressed significant effect on
production of leaves at 75 DAP (Table 5). During first year of study V_{4} recorded maximum number of leaves per plant
(12.01) at 75 DAP followed by $\mathrm{V}_{1}(11.97)$ and $\mathrm{V}_{5}(11.91)$ and all were statistically at par. But V_{2} recorded significantly less number of leaves followed by V_{3}; the lowest (11.15). As evident from Table 4, it was seen that during 2015-16 late kharif season V_{5} recorded maximum number of leaves of 12.36. The mean of both the years result revealed that V_{5} produced maximum number of leaves (12.14) followed by 12.04 in V_{4} and both were statistically at par with each other and V_{2} recorded the lowest (11.35). When the dates of planting were considered, it was seen that D_{2} recorded maximum number of leaves (12.33) followed by D_{3} and both are at par in the year 2014-15. Similar trend was observed in 2015-16 and also when the mean of both years was taken into consideration and D_{5} recorded the lowest number of leaves in both the years.
As regards to the effect of varieties within the date, it was seen that $\mathrm{D}_{2} \mathrm{~V}_{5}$ recorded the best treatment combination in production of maximum no. of leaves per plant recording 13.93, 13.77 and 13.85 in 2014-15, 2015-16 and pool analysis data respectively. During 2014-15, maximum number of leaves per plant was recorded in $\mathrm{D}_{2} \mathrm{~V}_{5}$. However the pool data revealed that maximum production of leaves per plant at 75 DAP was in $\mathrm{D}_{2} \mathrm{~V}_{5}$ (13.85). Similarly, the interaction effect of dates of planting and varieties have seen significant effect on production of leaves at 75 DAP. During 2014-15 late kharif planting maximum leaf production was recorded in treatment combination $\mathrm{D}_{2} \mathrm{~V}_{5}$ (13.93). During 2015-16 also $\mathrm{D}_{2} \mathrm{~V}_{5}$ (13.77) significantly produced maximum number of leaves. The average of both the years result indicated that treatment combination $\mathrm{D}_{2} \mathrm{~V}_{5}(13.85)$ recorded highest number of leaves. Here all the above treatment combinations are found statistically at par except $D_{1} V_{1}$. Anisuzzaman et al. (2009) ${ }^{[2]}$ studied the effects of planting time on seed production of onion and observed that onion cv. Taherpuri planted on $21^{\text {st }}$ November had highest leaves plant ${ }^{-1}$ (25.73) at 75 days after planting.

5. No. of leaves per plant at 90 DAP

On perusal of data presented in Table 6, expressed that both variety and date of planting have significant effect on production of leaf numbers during late kharif planting recorded at 90 DAP. In the first year of study, V_{3} recorded maximum number of leaves (12.66) followed by V_{2} (12.51), though both are equal on statistical point of view. Same trend was also observed in second year. When mean data was calculated, V_{3} significantly recorded maximum number of leaves per plant (12.78) followed by 12.56 in V_{2}.
The effect of dates of planting on leaf number, expressed that D_{2} recorded significantly maximum leaf numbers (13.01) in the year 2014-15. However, during second year of experiment D_{3} (13.10) also significantly recorded maximum number of leaves per plant followed by $\mathrm{D}_{2}(12.75)$. On analysis of both year results it is revealed that D_{3}, D_{2} and D_{4} at statistical at par although D_{3} recorded maximum number of leaves and D_{1} (11.55); the least.

Treatment combinations of $V \times D$ expressed that $D_{2} V_{5}$ significantly produced maximum number of leaves of 14.00 . In the second year also maximum production of leaves per plant was noticed in $\mathrm{D}_{2} \mathrm{~V}_{5}$ (13.77). However, the pool data revealed that maximum production of leaves per plant at 90 DAP was recorded in $\mathrm{D}_{2} \mathrm{~V}_{5}$ (13.88). Further the interaction effect of dates of planting with varieties revealed during 2014-15 planting $\mathrm{D}_{2} \mathrm{~V}_{5}$ significantly recorded maximum number of leaves of 14.00 . In the second year experiment
$D_{3} V_{2}$ (13.87) recorded maximum number of leaves per plant. Similarly, the mean data for both the years of study depicted that $\mathrm{D}_{2} \mathrm{~V}_{5}$ (13.88) recorded maximum number of leaves while $\mathrm{D}_{1} \mathrm{~V}_{1}$ (10.33) the shortest. There was a difference of 3.55 number of leaves per plant between the treatment no. $\mathrm{D}_{2} \mathrm{~V}_{5}$ and $D_{1} V_{1}$. The results of the study are supported by Manna et al. $(2016){ }^{[8]}$.

6. No. of leaves per plant at 105 DAP

With reference to the data presented in Table 7, it was revealed that leaves number per plant at 105 DAP was highly influenced by variety \& dates of planting in both the years of study. It was evident that V_{3} recorded maximum no. of leaves per plant (12.73) followed by $\mathrm{V}_{2}(12.51), \mathrm{V}_{4}$ (11.86), V_{5} (11.81) \& V_{1} (11.49) in the year 2014-15 where, all the varieties tested were statistically at par with each other. The trend in the second year of study expressed that V_{3} also counted more no. of leaves per plant (12.99) followed by V_{2} (12.70), V_{5} (12.11), V_{4} (11.93) \& V_{1} (11.44) although both $\mathrm{V}_{3} \& \mathrm{~V}_{2}$ are statistically at par. Finally the mean data also revealed that V_{3} borne maximum \& absolutely significant number of leaves (12.86) followed by V_{2} (12.61), V_{4} (11.90), V_{1} (11.46), and V_{5} (11.21) in which all the varieties were distinctly different from each other in terms of number of leaves per plant.
Regarding the date of planting, though D_{2} recorded maximum number of leaves per plant (12.90), there exists no significant difference among different dates during the first year of experiment. However during second year of study, D_{3} recorded maximum no. of leaves (13.02). The pooled data also revealed that D_{3} recorded maximum number of leaves (12.88).

There exists a positive and significant difference in treatment combinations of variety with dates of planting. In the year 2014-15 (13.87), and 2015-16 (13.37) $\mathrm{D}_{2} \mathrm{~V}_{5}$ recorded the maximum number of leaves per plant. However, the mean data of both the years result revealed that $D_{3} V_{2}(13.85)$ recorded maximum number of leaves.
Regarding the treatment combination of dates of planting with varieties it was revealed that during first year, though $\mathrm{D}_{2} \mathrm{~V}_{5}$ recorded the maximum number of leaves per plant (13.87). However, during second year and mean of both the years there was found positive and significant difference between the treatment combinations in production of number of leaves per plant. Treatments like $D_{2} V_{5}, D_{2} V_{3}, D_{1} V_{3}, D_{2} V_{2} \& D_{4} V_{3}$ and $D_{2} V_{3}, D_{1} V_{3}, D_{2} V_{2}, D_{4} V_{3}, D_{4} V_{2} \& D_{2} V_{4}$ are found at par. Similarly the mean data reflects a significant result recording maximum number of leaves in treatment combinations $D_{3} V_{2}$ (13.85). There exists a difference of 4.72 numbers of leaves between the maximum and minimum leaf producing treatments. The results was supported by Manna et al. (2016) ${ }^{[8]}$ who observed significant effect of date of planting on No. of leaves per plant.

7. Survival percent from seedling to bulbing

On perusal of the data presented in the Table 8 it was observed that survival percent of plants from seedling to bulbing was influenced by variety and dates of planting sowing a positive \& significant result. During 2014-15 although V_{4} recorded maximum survival percent (98.93%) followed by $\mathrm{V}_{2}(98.80 \%)$ and $\mathrm{V}_{3}(98.67 \%)$ they were at par. V_{1} recorded the lowest survival of 97.40% and it is statistically at par with $\mathrm{V}_{5}(98.00 \%)$. But during the year 2015-16, V V_{3} recorded significantly higher survival percent
(96.80%). However when the average of both the years data was analysed, it was seen that there exists no significant difference among varieties, although V_{3} recorded maximum survival \% of $(97.73 \%) \& V_{1}$; the minimum (96.40%).
The effect of dates of planting on survival \% revealed a significant result. In the $1^{\text {st }}$ year D_{3} recorded the highest survival percent of 98.93%. However, all three treatments were statistically at par along with D_{2} with D_{4}. Further, in the $2^{\text {nd }}$ year of study, D_{5} significantly recorded a survival of 97.73%. But the pool data analysis expressed a nonsignificant result although D_{5} scored 98.17%, which was the highest survival percent.
The interaction effect of variety \& dates expressed a nonsignificant result during 2014-15, though $\mathrm{D}_{3} \mathrm{~V}_{4}$ recorded highest survival percent. However, in the next year $D_{5} V_{3}$ (99.17%) recorded highest percent of survival. However the mean of both the years recorded a non-significant effect although varieties in D_{2} planting performed better over others. During 2014-15 the interaction effect of dates \& variety expressed a non-significant result even maximum percent of survival was recorded in $D_{2} V_{4} \& D_{3} V_{4}(99.50 \%)$ and minimum in $D_{1} V_{1}$ (95.67\%). However during 2015-16, there exists significant difference among the treatment combinations recording highest percent of survival in $\mathrm{D}_{5} \mathrm{~V}_{3}$ (99.17%). Moreover, the mean of both the years record a nonsignificant effect although maximum survival and minimum survival were recorded in $\mathrm{D}_{5} \mathrm{~V}_{3}(99.17 \%)$ and $\mathrm{D}_{1} \mathrm{~V}_{1}$ (94.75\%) respectively.

8. Survival \% from bulbing to seed setting

The effect of variety on survival percent from bulbing to seed setting indicated a significant result during both the years of study (Table 9). During $1^{\text {st }}$ year V_{4} scored 99.23% survival followed by $\mathrm{V}_{5}(98.74 \%)$ \& both are statistically at par and V_{2} recorded the lowest (97.15%). Again $\mathrm{V}_{3}(98.05 \%)$ with V_{1} (97.55%) and V_{1} (97.55%) with V_{2} (97.15%) were also found statistically at par. In the $2^{\text {nd }}$ year same tread was not observed and V_{2} recorded the highest survival percent (98.72%). However, the mean data of both the years recorded a nonsignificant effect although maximum survival percent was recorded in V_{4} (98.67%).
Regarding the effect of dates of planting on survival percent of plants it was observed that in the first year $\mathrm{D}_{1}(99.48 \%)$ stood first followed by D_{4} (99.18\%). Though there exists a significant difference among the treatments, $D_{4}, D_{3} \& D_{2}$ are at par with D_{1}. In the year 2015-16 although D_{4} scored the maximum (98.62%). The mean data of both the years revealed that although $\mathrm{D}_{4}(98.90 \%)$ scored the maximum and $\mathrm{D}_{5}(96.31 \%)$; the minimum.
Although the interaction effects of variety and dates of planting revealed a significant difference during both the years of study, the mean of both the years expressed a nonsignificant effect. During 2014-15, during first date of planting $\mathrm{D}_{1} \mathrm{~V}_{4}(99.83 \%)$ recorded highest survival, however, in the next year in $4^{\text {th }}$ date of planting, $\mathrm{D}_{4} \mathrm{~V}_{2}$ (98.97%) recorded highest survival. However, the mean of both the years found non-significant though the varieties under planting in $4^{\text {th }}$ date recorded highest percent of survival.
Further, the interaction effect of dates of planting and variety revealed a significant difference during both the years of study. In the first year $D_{1} V_{4}(99.83 \%)$ proved to be the best treatment combination. During 2015-16 maximum survival percent was recorded in treatment combination $D_{2} V_{3}$ (99.13\%). Here also same trend was observed as in 2014-15
recording an at par result among all the above except the lowest one. The mean data though revealed a non-significant effect $\mathrm{D}_{4} \mathrm{~V}_{3}(99.31 \%)$ recorded the highest survival and $\mathrm{D}_{5} \mathrm{~V}_{2}$ (94.16\%); the lowest.

9. Average seed yield per plant

It was evident from Table 10, that there exists a significant effect of variety and dates of planting on seed yield per plant. In both the years as well as the mean data revealed that all the varieties tested are significantly different from each other. During 2014-15 highest and significant seed yield recorded was 6.55 g per plant in V_{5} followed by $\mathrm{V}_{4}(5.60 \mathrm{~g})$. Similar result was also obtained in the second year of study recording significantly highest yield of 6.10 g per plants in V_{5}. Finally the average seed yield per plant of both the years recorded significantly maximum in $\mathrm{V}_{5}(6.32 \mathrm{~g})$. It implies that V_{5} is the maximum and highest seed yielder and V_{3} the lowest.
Further, the planting times also significantly influenced the seed yield per plant depicting maximum seed yield of 7.29 g in D_{2} in 2014-15. However, in the next year though there was slightly decline in seed yield in all the varieties tested as well on the planting dates it followed the same trend recording significantly highest yield of 6.74 g in D_{2}. Same trend was observed in mean data analysis results recording significantly highest yield in $\mathrm{D}_{2}(7.02 \mathrm{~g})$ and lowest in $\mathrm{D}_{5}(0.72 \mathrm{~g})$ and $\mathrm{D}_{1} \&$ D_{3} are found statistically at par.
The interaction effect of varieties and dates of planting depicted that varieties in D_{2} yielded more seed per plant recording significantly highest yield of 11.50 g in $\mathrm{D}_{2} \mathrm{~V}_{5}$. Similar trend was seen in 2015-16 as well as in pool data recording highest average seed yield per plant in $\mathrm{D}_{2} \mathrm{~V}_{5}$ $(11.17 \mathrm{~g})$. Further the interaction effect of dates of planting within varieties also affected the per plant seed yield recording significantly maximum yield in $\mathrm{D}_{2} \mathrm{~V}_{5}(11.50 \mathrm{~g})$ during 2014-15. Similar trend was recorded in 2015-16 as well as in the pool data recording significantly maximum seed yield per plot in $\mathrm{D}_{2} \mathrm{~V}_{5}$ (11.17g). However, El-Helaly and Karam (2012) ${ }^{[6]}$ reported that November planting had higher seed yield than rest of the planting dates under Giza, Ethiopia conditions.

10. Seed yield per hectare

It is evident from Table 11, that variety, dates of planting and their interaction effects had significant role on seed yield per hectare of land. During 2014-15 significantly highest seed yield was recorded in $\mathrm{V}_{5}(711.60 \mathrm{~kg})$ per hectare followed by $\mathrm{V}_{4}(323.35 \mathrm{~kg}), \mathrm{V}_{1}(499.50 \mathrm{~kg}), \mathrm{V}_{2}(229.30 \mathrm{~kg})$ and V_{3} (110.16 kg) and all the treatments are significantly different. Similar trend was also obtained in the second year of study recording significantly highest yield of 691.39 kg per in V_{5} and V_{3} the lowest; yielding 101.01 kg . Finally the pooled data also followed the same trend recording significantly maximum in $\mathrm{V}_{5}(701.49 \mathrm{~kg})$. It implies that V_{5} was the maximum and highest seed yielder and V_{3} the lowest. In both the years as well as the mean data revealed that all the varieties tested were significantly different from each other.
Demisie and Tolessa (2018) ${ }^{[5]}$ also reported that in onion seed production programme, variety had a significant effect on various parameters including leaves plant ${ }^{-1}$, leaf length, plant height. This increase in leaf number plant ${ }^{-1}$ and average plant height can lead to increase in photosynthetic area which can ultimately result in the increase in seed yield.
Further, the planting times also significantly influenced the seed yield per hectare recording highest seed yield in D_{2}
$(830.47 \mathrm{~kg})$ in 2014-15. During the next year it followed the same trend though there was slightly decline in seed yield in all the planting dates. Finally, the pooled data also followed the same trend as observed in both the years recording significantly highest yield in $\mathrm{D}_{2}(809.51 \mathrm{~kg})$.
There exists significant difference in seed yield per hectare when interaction effect of varieties and dates of planting was considered. In the year 2014-15 maximum seed yield was obtained in treatment combination $\mathrm{D}_{2} \mathrm{~V}_{5}(1251.31 \mathrm{~kg})$ in the year 2014-15. Similar trend was observed in 2015-16. So far as the pool data was considered it also followed the trend recording highest average seed yield per hectare in $\mathrm{D}_{2} \mathrm{~V}_{5}$ $(1226.65 \mathrm{~kg})$ and lowest in $\mathrm{D}_{2} \mathrm{~V}_{3}(143.59 \mathrm{~kg})$.
Further, the interaction effect of dates of planting within varieties also affected the seed yield per hectare. During 2014-15 significantly maximum yield was obtained in $\mathrm{D}_{2} \mathrm{~V}_{5}$ $(1251.31 \mathrm{~kg})$ and the lowest in $\mathrm{D}_{5} \mathrm{~V}_{3}(12.39 \mathrm{~kg})$. Similar trend was recorded in 2015-16 with slight deviation. The pool data followed the trend as recorded in 2014-15 yielding significantly maximum seed yield per plot in $\mathrm{D}_{2} \mathrm{~V}_{5}(1226.65$ kg). Ud-deen (2008) ${ }^{[12]}$ and Islam and Mondal, (2005) ${ }^{[7]}$, who also observed significant influence of planting dates on seed
yield of onion. Ashagrie et al. (2014) ${ }^{[4]}$ also observed significant interaction between different planting time ($25^{\text {th }}$ October and $5^{\text {th }} \& 15^{\text {th }}$ November) on both seed yield plant ${ }^{-1}$, seed yield ha^{-1}.

Correlation analysis

The correlation analysis (Table 12) indicated positive correlation between the total seed yield per ha (kg) with all the parameters except survival (\%) from seedling to bulbing. However, the correlation of total seed yield per ha (kg) with all others was statistically non-significant to each other except the average seed yield per plant (g), which was observed to highly significant (0.984). Similarly, the plant height at 75 DAP was observed to have positive significant correlation with plant height at 90 DAP (0.993) and plant height at 105 DAP (0.935). No. of leaves per plant at 75 DAP was also observed to have statistically significant positive correlation with No. of leaves per plant at 90 DAP (0.996) and No. of leaves per plant at 105 DAP (0.977). The No. of leaves per plant at 90 DAP was also having significant positive correction (0.981) with the No. of leaves per plant at 105 DAP.

Table 6: No. of leaves per plant at 90 DAP

	2014-2015						2015-2016						Pooled					
	V1	V2	V3	V4	V5	Mean	V1	V2	V3	V4	V5	Mean	V1	V2	V3	V4	V5	Mean
D1	10.33	12.17	13.20	10.97	11.13	11.56	10.33	12.20	12.63	11.23	11.30	11.54	10.33	12.18	12.92	11.10	11.22	11.55
D2	12.70	12.30	13.00	13.03	14.00	13.01	12.07	12.10	13.13	12.70	13.77	12.75	12.38	12.20	13.07	12.87	13.88	12.88
D3	13.03	13.80	12.73	12.70	11.63	12.78	12.47	13.87	13.80	12.67	12.70	13.10	12.75	13.83	13.27	12.68	12.17	12.94
D4	12.17	12.57	12.53	12.00	11.63	12.18	12.13	12.67	12.67	12.27	12.10	12.37	12.15	12.62	12.60	12.13	11.87	12.27
D5	11.87	11.70	11.83	11.50	11.30	11.64	11.83	12.20	12.27	11.70	11.97	11.99	11.85	11.95	12.05	11.60	11.63	11.82
Mean	12.02	12.51	12.66	12.04	11.94	12.23	11.77	12.61	12.90	12.11	12.37	12.35	11.89	12.56	12.78	12.08	12.15	12.29
	$\begin{array}{\|c} \hline \text { S.Em } \\ (\pm) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { CD } \\ 0.05 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { CV(a) } \\ (\%) \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { CV(b) } \\ (\%) \end{gathered}$			$\begin{array}{\|c} \hline \text { S.Em } \\ (\pm) \end{array}$	$\begin{gathered} \hline \text { CD } \\ 0.05 \\ \hline \end{gathered}$	$\begin{gathered} \text { CV(a) } \\ (\%) \end{gathered}$	$\begin{gathered} \text { CV(b) } \\ (\%) \end{gathered}$			$\begin{gathered} \text { S.Em } \\ (\pm) \end{gathered}$	$\begin{gathered} \hline \text { CD } \\ 0.05 \\ \hline \end{gathered}$	$\begin{gathered} \text { CV(a) } \\ (\%) \end{gathered}$	$\begin{array}{\|l} \hline \text { CV(b) } \\ (\%) \end{array}$		
V	0.076	0.218	2.208	2.415			0.109	0.313	3.023	3.433			0.073	0.206	12.740	3.262		
D	0.070	0.227					0.096	0.314					0.286	0.857				
V within D	0.259	0.758					0.368	1.077					0.542	1.603				
D within V	0.171	0.488					0.245	0.700					0.718	2.021				

Table 7: No. of leaves per plant at 105 DAP

	2014-2015						2015-2016						Pooled					
	V1	V2	V3	V4	V5	Mean	V1	V2	V3	V4	V5	Mean	V1	V2	V3	V4	V5	Mean
D1	10.27	12.17	13.37	10.80	11.10	11.54	10.10	12.20	12.97	10.97	10.87	11.42	10.18	12.18	13.17	10.88	9.13	11.11
D2	12.53	12.37	13.17	12.57	13.87	12.90	11.93	12.70	13.20	12.63	13.37	12.77	12.23	12.53	13.18	12.60	13.62	12.83
D3	12.97	13.80	12.77	12.63	11.50	12.73	12.37	13.90	13.90	12.40	12.53	13.02	12.67	13.85	13.33	12.52	12.02	12.88
D4	11.20	12.50	12.50	11.83	11.50	11.91	11.73	12.67	12.70	12.13	12.07	12.26	11.47	12.58	12.60	11.98	9.87	11.70
D5	10.47	11.73	11.83	11.47	11.10	11.32	11.07	12.03	12.20	11.53	11.70	11.71	10.77	11.88	12.02	11.50	11.40	11.51
Mean	11.49	12.51	12.73	11.86	11.81	12.08	11.44	12.70	12.99	11.93	12.11	12.23	11.46	12.61	12.86	11.90	11.21	12.01
	$\begin{gathered} \mathrm{S} . \mathrm{Em} \\ (\pm) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { CD } \\ 0.05 \\ \hline \end{array}$	$\begin{gathered} \text { CV(a) } \\ (\%) \end{gathered}$	$\begin{gathered} \text { CV(b) } \\ (\%) \end{gathered}$			$\begin{array}{\|c} \hline \text { S.Em } \\ (\pm) \end{array}$	$\begin{gathered} \hline \text { CD } \\ 0.05 \end{gathered}$	$\begin{gathered} \mathrm{CV}(\mathrm{a}) \\ (\%) \end{gathered}$	$\begin{gathered} \text { CV(b) } \\ (\%) \end{gathered}$			$\begin{gathered} \text { S.Em } \\ (\pm) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { CD } \\ 0.05 \\ \hline \end{array}$	$\begin{gathered} \text { CV(a) } \\ (\%) \end{gathered}$	$\begin{gathered} \mathrm{CV}(\mathrm{~b}) \\ (\%) \end{gathered}$		
V	0.487	1.392	17.465	16.008			0.109	0.310	2.526	3.436			0.073	0.205	12.801	3.326		
D	0.531	NS					0.080	0.260					0.281	0.841				
V within D	1.726	NS					0.354	1.028					0.533	1.577				
D within V	1.089	NS					0.243	0.694					0.707	1.989				

Table 8: Survival \% from seedling to bulbing

	2014-2015						2015-2016						Pooled					
	V1	V2	V3	V4	V5	Mean	V1	V2	V3	V4	V5	Mean	V1	V2	V3	V4	V5	Mean
D1	95.67	98.33	98.33	97.83	97.00	97.43	93.83	95.17	95.50	95.00	95.67	95.03	94.75	96.75	96.92	96.42	96.33	96.23
	(9.78)	(9.92)	(9.92)	(9.89)	(9.85)	(9.87)	(9.69)	(9.76)	(9.77)	(9.75)	(9.78)	(9.75)	(9.73)	(9.84)	(9.84)	(9.82)	(9.81)	(9.81)
D2	97.00	99.33	99.17	99.50	98.50	98.70	93.17	94.83	95.67	94.33	94.67	94.53	95.08	97.08	97.42	96.92	96.58	96.62
	(9.85)	(9.97)	(9.96)	(9.97)	(9.92)	(9.93)	(9.65)	(9.74)	(9.78)	(9.71)	(9.73)	(9.72)	(9.75)	(9.85)	(9.87)	(9.84)	(9.83)	(9.83)
D3	98.33	99.17	99.33	99.50	98.33	98.93	95.50	97.33	98.33	95.33	97.00	96.70	96.92	98.25	98.83	97.42	97.67	97.82
	(9.92)	(9.96)	(9.97)	(9.97)	(9.92)	(9.95)	(9.77)	(9.87)	(9.92)	(9.76)	(9.85)	(9.83)	(9.84)	(9.91)	(9.94)	(9.87)	(9.88)	(9.89)
D4	97.67	98.50	97.33	98.50	98.67	98.13	96.67	96.33	95.33	96.83	97.00	96.43	97.17	97.42	96.33	97.67	97.83	97.28

	(9.88)	(9.92)	(9.87)	(9.92)	(9.93)	(9.91)	(9.83)	(9.81)	(9.76)	(9.84)	(9.85)	(9.82)	(9.86)	(9.87)	(9.81)	(9.88)	(9.89)	(9.86)
D5	98.33	98.67	99.17	99.33	97.50	98.60	97.83	97.33	99.17	97.17	97.17	97.73	98.08	98.00	99.17	98.25	97.33	98.17
	(9.92)	(9.93)	(9.96)	(9.97)	(9.87)	(9.93)	(9.89)	(9.87)	(9.96)	(9.86)	(9.86)	(9.89)	(9.90)	(9.90)	(9.96)	(9.91)	(9.87)	(9.91)
Mean	97.40	98.80	98.67	98.93	98.00	98.36	95.40	96.20	96.80	95.73	96.30	96.09	96.40	97.50	97.73	97.33	97.15	97.22
	(9.87)	(9.94)	(9.93)	(9.95)	(9.90)	(9.92)	(9.77)	(9.81)	(9.84)	(9.78)	(9.81)	(9.80)	(9.82)	(9.87)	(9.89)	(9.87)	(9.86)	(9.86)
	$\begin{gathered} \text { S.Em } \\ (\pm) \end{gathered}$	$\begin{gathered} \text { CD } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { CV(a) } \\ (\%) \end{gathered}$	$\begin{gathered} \text { CV(b) } \\ (\%) \end{gathered}$			$\underset{(\pm)}{\mathrm{S} . \mathrm{Em}}$	$\begin{gathered} \text { CD } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { CV(a) } \\ (\%) \end{gathered}$	$\begin{gathered} \mathrm{CV}(\mathrm{~b}) \\ (\%) \end{gathered}$			$\begin{gathered} \text { S.Em } \\ (\pm) \end{gathered}$	$\begin{gathered} \text { CD } \\ 0.05 \end{gathered}$	$\begin{gathered} \hline \text { CV(a) } \\ (\%) \end{gathered}$	$\begin{gathered} \mathrm{CV}(\mathrm{~b}) \\ (\%) \end{gathered}$		
V	0.011	0.031	0.243	0.425			0.009	0.027	0.535	0.370			0.064	NS	13.871	3.530		
D	0.006	0.020					0.014	0.044					0.250	NS				
V within D	0.034	NS					0.037	0.110					0.473	NS				
D within V	0.024	NS					0.021	0.060					0.627	NS				

Table 9: Survival \% from bulbing to seed setting

	2014-2015						2015-2016						Pooled					
	V1	V2	V3	V4	V5	Mean	V1	V2	V3	V4	V5	Mean	V1	V2	V3	V4	V5	Mean
D1	99.12	99.29	99.49	99.83	99.65	99.48	96.45	98.60	98.95	98.07	96.69	97.75	97.79	98.95	99.22	98.95	98.17	98.61
	(9.96)	(9.96)	(9.97)	(9.99)	(9.98)	(9.97)	(9.82)	(9.93)	(9.95)	(9.90)	(9.83)	(9.89)	(9.89)	(9.95)	(9.96)	(9.95)	(9.91)	(9.93)
D2	99.14	98.82	98.99	99.16	98.14	98.85	98.57	98.95	99.13	97.53	97.37	98.31	98.85	98.88	99.06	98.34	97.75	98.58
	(9.96)	(9.94)	(9.95)	(9.96)	(9.91)	(9.94)	(9.93)	(9.95)	(9.96)	(9.88)	(9.87)	(9.92)	(9.94)	(9.94)	(9.95)	(9.92)	(9.89)	(9.93)
D3	98.64	98.82	98.99	98.99	98.98	98.88	98.08	98.11	98.14	98.25	98.63	98.24	98.36	98.47	98.56	98.62	98.80	98.56
	(9.93)	(9.94)	(9.95)	(9.95)	(9.95)	(9.94)	(9.90)	(9.91)	(9.91)	(9.91)	(9.93)	(9.91)	(9.92)	(9.92)	(9.93)	(9.93)	(9.94)	(9.93)
D4	98.29	99.48	99.66	99.49	98.99	99.18	98.45	98.97	98.95	98.79	97.94	98.62	98.37	99.23	99.31	99.14	98.46	98.90
	(9.91)	(9.97)	(9.98)	(9.97)	(9.95)	(9.96)	(9.92)	(9.95)	(9.95)	(9.94)	(9.90)	(9.93)	(9.92)	(9.96)	(9.97)	(9.96)	(9.92)	(9.94)
D5	92.54	89.34	93.12	98.66	97.95	94.32	98.81	98.97	98.16	97.94	97.94	98.37	95.68	94.16	95.64	98.30	97.95	96.34
	(9.62)	(9.45)	(9.65)	(9.93)	(9.90)	(9.71)	(9.94)	(9.95)	(9.91)	(9.90)	(9.90)	(9.92)	(9.78)	(9.70)	(9.78)	(9.91)	(9.90)	(9.81)
Mean	97.55	97.15	98.05	99.23	98.74	98.14	98.07	98.72	98.67	98.12	97.71	98.26	97.81	97.94	98.36	98.67	98.23	98.20
	(9.88)	(9.85)	(9.90)	(9.96)	(9.94)	(9.91)	(9.90)	(9.94)	(9.93)	(9.91)	(9.88)	(9.91)	(9.89)	(9.90)	(9.92)	(9.93)	(9.91)	(9.91)
	$\begin{gathered} \mathrm{S} . \mathrm{Em} \\ (\pm) \end{gathered}$	$\begin{aligned} & \text { CD } \\ & 0.05 \end{aligned}$	$\begin{gathered} \text { CV(a) } \\ (\%) \end{gathered}$	$\begin{gathered} \text { CV(b) } \\ (\%) \end{gathered}$			$\begin{gathered} \text { S.Em } \\ (\pm) \end{gathered}$	$\begin{gathered} \mathrm{CD} \\ 0.05 \end{gathered}$	$\begin{gathered} \text { CV(a) } \\ (\%) \end{gathered}$	$\begin{gathered} \text { CV(b) } \\ (\%) \end{gathered}$			$\begin{gathered} \text { S.Em } \\ (\pm) \end{gathered}$	$\begin{gathered} \text { CD } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { CV(a) } \\ (\%) \end{gathered}$	$\begin{gathered} \text { CV(b) } \\ (\%) \end{gathered}$		
V	0.012	0.034	0.408	0.459			0.009	0.025	0.367	0.348			0.064	NS	13.790	3.514		
D	0.010	0.034					0.009	NS					0.249	NS				
V within D	0.040	0.116					0.031	0.092					0.472	NS				
D within V	0.026	0.075					0.020	0.057					0.626	NS				

Table 10: Average seed yield per plant (g)

	2014-2015						2015-2016						Pooled					
	V1	V2	V3	V4	V5	Mean	V1	V2	V3	V4	V5	Mean	V1	V2	V3	V4	V5	Mean
D1	7.18	2.09	3.36	6.27	7.53	5.29	6.25	1.92	2.73	5.48	7.11	4.70	6.72	2.01	3.04	5.88	7.32	4.99
D2	7.89	4.53	3.14	9.41	11.50	7.29	7.26	4.17	2.45	8.96	10.85	6.74	7.57	4.35	2.80	9.19	11.17	7.02
D3	4.03	2.71	1.06	7.57	8.85	4.85	3.88	2.53	1.02	7.18	8.29	4.58	3.96	2.62	1.04	7.38	8.57	4.71
D4	1.88	1.40	0.59	3.75	3.24	2.17	1.67	1.19	0.48	3.52	2.81	1.94	1.78	1.30	0.54	3.64	3.02	2.05
D5	0.82	0.31	0.15	1.01	1.64	0.78	0.63	0.24	0.08	0.88	1.41	0.65	0.72	0.27	0.11	0.95	1.53	0.72
Mean	4.36	2.21	1.66	5.60	6.55	4.08	3.94	2.01	1.35	5.21	6.10	3.72	4.15	2.11	1.51	5.40	6.32	3.90
	$\begin{gathered} \text { S.Em } \\ (\pm) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { CD } \\ 0.05 \\ \hline \end{array}$	$\begin{gathered} \hline \text { CV(a) } \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CV(b) } \\ \hline(\%) \\ \hline \end{gathered}$			S.Em (\pm)	$\begin{gathered} \hline \text { CD } \\ 0.05 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { CV(a) } \\ (\%) \\ \hline \end{array}$	$\begin{gathered} \hline \text { CV(b) } \\ \hline(\%) \\ \hline \end{gathered}$			$\begin{gathered} \text { S.Em } \\ (\pm) \end{gathered}$	$\begin{gathered} \hline \text { CD } \\ 0.05 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CV(a) } \\ (\%) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { CV(b) } \\ \hline(\%) \\ \hline \end{array}$		
V	0.068	0.195	6.610	6.469			0.058	0.167	4.618	6.069			0.055	0.154	34.096	7.676		
D	0.070	0.227					0.044	0.145					0.243	0.728				
V within D	0.237	0.698					0.191	0.556					0.451	1.339				
D within V	0.152	0.435					0.130	0.373					0.595	1.674				

Table 11: Total seed yield per ha (kg)

	2014-2015						2015-2016						Pooled					
	V1	V2	V3	V4	V5	Mean	V1	V2	V3	V4	V5	Mean	V1	V2	V3	V4	V5	Mean
D1	641.84	247.23	316.82	549.88	622.45	475.64	628.51	238.26	266.42	522.05	605.16	452.08	635.17	242.74	291.62	535.97	613.80	463.86
D2	1099.65	517.16	153.09	1131.13	1251.31	830.47	1001.67	498.83	134.08	1106.14	1201.99	788.54	1050.66	507.99	143.59	1118.64	1226.65	809.51
D3	491.28	221.43	45.18	777.30	1031.79	513.39	456.75	218.14	58.92	720.63	1044.31	499.75	474.02	219.78	52.05	748.96	1038.05	506.57
D4	186.83	139.27	23.31	491.82	419.79	252.20	186.77	131.54	37.88	466.27	391.31	242.75	186.80	135.41	30.59	479.05	405.55	247.48
D5	77.87	21.40	12.39	166.61	232.64	102.18	71.27	22.34	7.76	165.11	214.19	96.13	74.57	21.87	10.07	165.86	223.41	99.16
Mean	499.50	229.30	110.16	623.35	711.60	434.78	468.99	221.82	101.01	596.04	691.39	415.85	484.24	225.56	105.58	609.69	701.49	425.32
	S.Em (\pm)	CD 0.05	$\begin{array}{\|c\|} \hline \text { CV(a) } \\ (\%) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { CV(b) } \\ (\%) \\ \hline \end{array}$			S.Em \pm)	CD 0.05	$\begin{gathered} \text { CV(a) } \\ (\%) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { CV(b) } \\ (\%) \end{array}$			$\begin{gathered} \text { S.Em } \\ (\pm) \end{gathered}$	$\begin{gathered} \text { CD } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { CV(a) } \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \text { CV(b) } \\ (\%) \\ \hline \end{gathered}$		
V	3.713	10.614	2.514	3.308			4.657	13.312	4.303	4.338			0.685	1.928	3.582	0.883		
D	2.822	9.204					4.620	15.067					2.781	8.339				
V within D	12.165	35.390					16.102	47.303					5.238	15.515				
D within V	8.303	23.733					10.414	29.767					6.934	19.508				

Table 12: Correlation coefficient matrix among the various parameters

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}	\mathbf{J}
A	1.000									
B	$0.993^{* *}$	1.000								
C	0.935^{*}	$0.969^{* *}$	1.000							
D	0.208 NS	0.116 NS	-0.083 NS	1.000						
E	0.257 NS	0.163 NS	-0.045 NS	$0.996^{* *}$	1.000					
F	0.314 NS	0.212 NS	-0.001 NS	$0.977^{* *}$	$0.981^{* *}$	1.000				
G	-0.652 NS	-0.723 NS	-0.843 NS	0.155 NS	0.160 NS	0.165 NS	1.000			
H	0.650 NS	0.670 NS	0.633 NS	0.358 NS	0.390 NS	0.288 NS	-0.633 NS	1.000		
I	0.865 NS	0.845 NS	0.785 NS	0.488 NS	0.497 NS	0.552 NS	-0.692 NS	0.623 NS	1.000	
J	0.771 NS	0.740 NS	0.665 NS	0.608 NS	0.606 NS	0.653 NS	-0.618 NS	0.593 NS	$0.984 * *$	1.000

A: Plant height at 75 DAP; B: Average plant height at 90 DAP; C: Average plant height at 105 DAP ; D: No. of leaves per plant at 75 DAP; E: No. of leaves per plant at 90 DAP; F: No. of leaves per plant at 105 DAP; G: Survival (\%) from seedling to bulbing; H: Survival (\%) from bulbing to seed setting; I: Average seed yield per plant (g); J: Total seed yield per ha (kg).
** Significant at $P \leq .01 \%$, * Significant at $P \leq .05 \%$.

Acknowledgement

The authors thankfully acknowledge the AINRP on Onion \& Garlic, College of Horticulture, OUAT, Chiplima, Sambalpur, Odisha, India, funded by DOGR, Rajgurunagar, Pune for providing inputs.

References

1. Amsalu A, Afari-Sefa V, Bezabih F, Fekadu FD, Tesfaye B, Miikessa T. Analysis of vegetable seed systems and implications for vegetable development in the humid tropics of Ethiopia. International Journal of Agriculture and Forestry 2014;4(4):325-337.
2. Anisuzzaman M, Ashrafuzzaman M, Ismail MR, Uddin MK, Rahim MA. Planting time and mulching effect on onion development and seed production. African Journal of Biotechnology 2009;8(3):412-416.
3. Anonymous. Horticulture Statistics at a Glance. Horticulture statistics division, Department of Agriculture, Coop and Farmers Welfare, Govt. of India, New Delhi 2018.
4. Ashagrie T, Belew D, Alamerew S, Getachew Y. Effects of planting time and mother bulb size on Onion (Allium сера L.) seed yield and quality at Kobo Woreda, Northern Ethiopia. International Journal of Agricultural Research 2014;9(5):231-241.
5. Demisie R, Tolessa K. Growth and bulb yield of onion (Allium cepa L.) in response to plant density and variety in Zimma, south west Ethiopia. Advances in Crop Science and Technology 2018;6(2):357.
6. El-Helaly MA, Karam SS. Influence of planting date on the production and quality of onion seeds. Journal of Horticultural Science \& Ornamental Plants 2012;4(3):275-279.
7. Islam AKMM, Mondal MF. Effects of planting date and GA_{3} on growth, yield and quality of onion seeds grown from sets. Journal of Bangladesh Agricultural University 2005;3(1):7-12.
8. Manna D, Maity TK, Basu AK. Comparison on condition and packaging materials on better storage of onion seeds. Asian Journal of Horticulture 2020;15(1):15-25.
9. Mollah MRA, Ali MA, Ahmad M, Hassan MK, Alam MJ. Effect of planting dates on the yield and quality of true seeds of onion. International Journal of Applied Science and Biotechnology 2015;3(1):67-72.
10. Sahoo BB, Das S, Tripathy P, Dash DK. ITK-based approach for sustainable production of onion in Odisha. International Journal of Farm Sciences 2016;6(3):7-11.
11. Tripathy P, Priyadarshini A, Dash SK, Sahoo BB, Dash

DK. Evaluation of Onion (Allium cepa L.) genotypes for tolerance to thrips (Thrips tabaci L.) and Purple Blotch (Alternaria porri Ellis). International Journal of Bioresource and Stress Management 2013;4(4):561-564.
12. Ud-Deen MM. Effect of mother bulb size and planting time on growth, bulb and seed yield of onion. Bangladesh Journal of Agricultural Research 2008:33(4):531-537.

