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Abstract 
With the expanding importance and prevalence of protein therapeutics, recombinant proteins offer 
different applications in diverse fields including therapeutics and research. For the efficient production of 
target proteins, various expression systems are available in the market including prokaryotic, eukaryotic 
and mammalian systems. Pichia pastoris (P. pastoris) is the most widely used novel expression cassettes 
with the scope of genetic engineering and cell modifications in secretion pathways. P. pastoris can be 
considered as a distinguished production system for its growth to very high cell densities, for the 
available strong and tightly regulated promoters, and for the options to produce gram amounts of 
recombinant protein per litre of culture both intracellularly and in secretory fashion. Thus, making P. 
pastoris a successful expression system for recombinant protein production with due scope of 
improvements for future discoveries. We review the characteristic features of P. pastoris as eukaryotic 
host system for the expression of recombinant proteins and advantages over other expression systems. 
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1. Introduction 
Nowadays, numerous approaches are available for the expression of recombinant proteins for 
their usage in medical as well as industrial fields. These heterologous proteins can include 
pharmaceutical drugs, recombinant vaccines, agricultural or industrial products [1]. 
Recombinant proteins have great application and utility in medical and research sphere which 
arises the need for the large scale production of recombinant proteins. Therefore, biological 
expression systems are the most favoured for heterologous protein production employing both 
prokaryotic and eukaryotic hosts. Some of the established expression hosts includes bacteria, 
yeasts, molds, mammals, plants and insects [2]. Among the prokaryotic cells, Gram negative 
bacteria are mostly used with Escherichia coli being ranked as the most important organism 
used in cloning experiments and recombinant protein production in the branch of genetic 
engineering [3]. 
Although, prokaryotic expression system offers the advantages of fast multiplication, simple 
and easy modification and cheaper system of expression in terms of nutritional requirements. 
Despite of such remarkable features, bacterial cells have certain demerits like improper protein 
folding, intracellular aggregation in form of inclusion bodies, chances of endotoxin 
contamination due to production of lipopolysaccharide, possibility of protein degradation and 
lack of posttranslational modifications [4]. Therefore, researchers experimented with other 
better alternatives to overcome these limitations for successful production of heterologous 
proteins. Eukaryotic yeast expression system like Saccharomyces cerevisiae (S. cerevisiae), P. 
pastoris and mammalian systems [e.g. Chinese hamster ovary (CHO) cells] harbours the good 
potential for their efficient utilization as heterologous host for protein production. Out of all, P. 
pastoris is the most popular and standard tool in molecular biology for nanobody production [5, 
6]. P. pastoris has been one of the most successful heterologous protein expression systems for 
production of wide variety of recombinant proteins until now [7]. This methylotrophic yeast is 
recently reclassified as Komagataella pastoris as a distinguished production system for its 
growth to very high cell densities, for the available strong and tightly regulated promoters, and 
for the options to produce gram amounts of recombinant protein per litre of culture both 
intracellularly and in secretory fashion [8]. Compared with bacteria, P. pastoris has many of the 
remarkable advantages of higher eukaryotic expression systems. Some of the key features and 
benefits of P. pastoris expression system include fast growth, high product titers, lower 
production cost, post-translational modifications, high clone stability, simplified downstream 
processing, low levels of endogenous protein secretion etc. These features make P. pastoris 
very useful as a protein expression system [9].
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2. P. pastoris as an efficient heterologous protein 
expression system  
Yeasts were more frequently used for production of 
heterologous proteins than bacterial systems because 
prokaryotes (E. coli) lacked the same post-translational 
protein folding machinery seen in higher species [10, 11]. 
Protein production using yeast as expression system is gaining 
popularity because of significant advantages like rapid 
proliferation in protein-free media, ability to carry out post-
translational modifications, disulfide bond formation, which 
facilitates proper folding and capability to secrete product [12, 

13]. While P. pastoris is the major strain used for expression of 
recombinant antibodies, other strains like S. cerevisiae, 
Yarrowia lipolytica, and Schizosaccharomyces pombe have 
also been used but to a lesser extent. Recombinant protein 
named (human glutamic acid decarboxylase) hGAD65 was 
expressed in the yeast and with yield of up to 12.16 mg/L was 
reported [14]. Recombinant hIL-6 was expressed successfully 
in large-scale cultures of the methylotrophic yeast P. pastoris 
with the yield of 280 mg/L [15]. P. pastoris was demonstrated 
as the most efficient host for remarkable production of protein 
with a yield of more than 18 g/L [16].  
 
3. Historical background  
The methylotrophic yeast P. pastoris was first isolated from a 
chestnut tree in France and described as Zygosaccharomyces 
pastori by the French mycologist and cytologist Alexandre 
Guilliermond Alexandre [17]. In 1950’s, Herman Phaff isolated 
further related strains from oak trees in California and 
renamed the species as P. pastoris [18]. In 1995, the P. pastoris 
strains were recognized to a new genus named Komagataella 
and was separated into two species: K. pastoris and K. phaffii. 
Both the strains were used for recombinant protein production 
under the name P. pastoris [19, 20]. 
Koichi Ogata was the first to describe the ability of certain 
yeast species to utilize methanol as a sole source of carbon 
and energy [21]. The yeast P. pastoris, today allocated to the 
genus Komagataella, was introduced in field of biotechnology 
and it was in the era of 1970s when P. pastoris was evaluated 
for single cell protein production for food and feed 
applications due to the unique ability of utilizing methanol as 
a sole carbon source [22, 23]. The Phillips Petroleum Company 
was the first to develop media and protocols for the growth of 
P. pastoris on methanol in continuous culture at high cell 
densities (>130 g/dry cell weight [23]. However, in the 
upcoming years, Phillips Petroleum, together with the Salk 
Institute Biotechnology/Industrial Associates Inc. (SIBIA, La 
Jolla, CA, USA) investigated P. pastoris as a system for 
heterologous protein expression. It was SIBIA to come up as 
a pioneering institute for the isolation of the gene and 
promoter for alcohol oxidase and also evolved vectors, strains 
and corresponding protocols for the molecular manipulation 
of P. pastoris [24]. Research Corporation Technologies 
(Tucson, AZ, USA) are the current holders of the patent for 
the P. pastoris expression system, which they have held since 
1993, and the P. pastoris expression system is now provided 
in the kit form that can be purchased from Invitrogen 
Corporation (Carlsbad, CA, USA).  
 
4. Characteristics of P. pastoris as eukaryotic host system 
for the expression of recombinant proteins  
4.1 Methanol metabolism in P. pastoris 
The conceptual basis for the P. pastoris expression system 
stems from the observation that unique enzymes required for 

the metabolism of methanol are present at substantial levels 
only when cells are grown on the media containing ample 
amount of methanol [25]. P. pastoris was able to metabolize 
methanol via a novel pathway called MUT (methanol 
utilization) pathway that could be explained well in a step-by-
step procedure involving several enzymes [26, 27]. The initial 
reactions occur in specialized micro-bodies, the peroxisomes, 
followed by subsequent metabolic steps in the cytoplasm. 
Peroxisomes play an indispensable role during growth, as 
they harbour the three main essential enzymes that were 
alcohol oxidase (AOX), catalase and dihydroxyacetone 
synthase [28]. The subsequent reactions of methanol 
assimilation and dissimilation were localized in the cytosol. 
In the first step, AOX enzyme catalysed the oxidation of 
methanol to formaldehyde and hydrogen peroxide. Then, 
AOX was sequestered within the peroxisome along with 
enzyme catalase, which degrades hydrogen peroxide to 
oxygen and water. A portion of the formaldehyde generated 
by AOX leaves the peroxisome and was further oxidized to 
formate and carbon dioxide with help of two cytoplasmic 
dehydrogenases and the remaining formaldehyde was 
assimilated to form cellular constituents by a cyclic pathway 
that starts with the condensation of formaldehyde with 
xylulose 5-monophosphate, a reaction catalyzed by a third 
peroxisomal enzyme dihydroxyacetone synthase (DHAS) [29, 

30]. Glyceraldehyde 3-phosphate and dihydroxyacetone are the 
main products of this reaction that leave the peroxisome and 
enter a cytoplasmic pathway that regenerates xylulose 5-
monophosphate [31, 32]. Two novel enzymes namely AOX and 
DHAS that are essential for the methanol metabolic pathway 
were present at high levels only in the cells that were grown 
on methanol and were not found in appreciable amount in 
cells grown on some other carbon sources like glucose, 
glycerol or ethanol [33].  
 
4.2 Plasmids and protein expression platforms 
For recombinant protein expression in P. pastoris, it is very 
important to design a suitable expression machinery system 
that includes plasmid, promoter, selection marker, secretary 
signal sequence and host strain. All of these factors may be 
modified with the type of recombinant protein to be expressed 
and its final applications. The current status of the various 
types of promoter and plasmid systems, markers and platform 
strains that were commercially available is briefly explained. 
 
4.2.1 AOX Promoters 
Depending on the mode of controlled gene expression, there 
are different types of promoters used for the expression of 
recombinant proteins. The genome of P. pastoris comprised 
of two genes that encodes for the enzyme alcohol oxidase: 
AOX1 and AOX2; AOX1 was responsible for a vast majority 
of alcohol oxidase activity in the cell [23]. The AOX1 gene 
product was the most important protein in initializing the 
methanol utilization pathway and mainly used to construct 
expression vectors for heterologous protein expression. The 
AOX1 (pAOX1) promoter is having remarkable strength and 
constitutes up to 30% of total soluble protein in the P. 
pastoris cells grown on solely methanol [31]. The advantages 
of using the AOX1 promoter include that high levels of 
heterologous protein expression can be achieved, transcription 
of recombinant protein was controlled by a repression/de-
repression mechanism and tightly regulated, the repression of 
the AOX1 gene by most carbon sources other than methanol 
ensures high cell growth before gene expression and induction 
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of transcription can be easily attained by the addition of 
methanol as a sole inducer [33, 34]. While on the contrary, the 
second alcohol oxidase AOX2 was controlled by a much 
weaker promoter (pAOX2) and only accounts for just 15% of 
the total AOX activity in the cells [35]. 
 
4.2.2 Methanol utilization phenotypes 
Presently, three phenotypes of P. pastoris with regard to 
methanol utilization have been recognized: i) Mut+ (methanol 
utilization plus), where both AOX genes are intact and active; 
ii) MutS (methanol utilization slow), where AOX1 is knocked 
out; iii) Mut- (methanol utilization minus) where both AOX 
genes are knocked-out and is unable to grow on methanol as 
the sole carbon source [23]. It has been reported that the Mut+ 
strains were characterized by a higher growth rate than MutS 
strains and usually associated with higher productivities [36, 37]. 
When Mut+ and MutS strains were grown in the presence of 
sufficiently high concentrations of glucose or glycerol, the 
transcription of MUT pathway was repressed [38]. Since the 
rate of methanol consumption was higher for Mut+ strains, 
they were very sensitive to high methanol concentrations 
which may even cause difficulty in scaling up of bioprocesses 
[39]. Also sometimes it was cumbersome to meet high the 
demand for oxygen requirements of Mut+ phenotype in high 
cell density cultures [40, 41]. Moreover, the strong production of 
AOX1 in Mut+ strains during growth on methanol may 
compete with the production of recombinant proteins [42]. 
These drawbacks can be overcome by using P. pastoris 
strains with MutS phenotype due to the lower methanol 
consumption rate. However, the MutS phenotype also leads to 
long induction times and decreased growth rates. Commonly 
while using MutS phenotypes mixed feed strategies (e.g. 
glycerol and methanol) were employed for the induction 
phase [41]. Interestingly, it has been investigated that MutS 
phenotypes were more advantageous over Mut+ phenotypes 
for the production of some recombinant proteins [43, 44]. 
 
4.2.3 Host strains 
All strains of P. pastoris yeast used for heterologous protein 
expression derive their origin from NRRL-Y 11430 or X-33 
wild type strain. The choices of these strains depend on the 
desired application and their ability to metabolize methanol 
[45]. Mutations in the auxotrophic genes have given rise to 
different strains with specific growth in complex media and 
minimal media supplemented with His and arginine. 
Similarly, deletions in AOXI and AOXII genes render mutant 
variants of P. pastoris [46]. Strain GS115 (his4) has both AOX 
genes functional and thus metabolizes methanol at a high rate, 
similar to that of wild type, and were recognized as Mut+ 
(methanol utilization phenotype). Strain KM71 (his4 arg4 
aox1D::ARG4) was generated by deleting the chromosomal 
AOX1 gene and replacing it with S. cerevisiae ARG4, it relies 
on activity of weaker AOXII gene and show slow growth on 
methanol, this phenotype was called as MutS (methanol 
utilization slow). The third type of expression host, MC100-3 
(his4 arg4 aox1D::SARG4 aox2D::Phis4) had deletion of both 
AOX genes and cannot grow on methanol as carbon source; 
this phenotype was Mut- (methanol utilization minus). 
Recombinant proteins secreted by P. pastoris into the culture 
medium were rapidly degraded by yeast vacuole proteases 
during high-cell-density fermentations leading to lower yield 
[47, 48]. The use of protease-deficient strains like SMD 1163, 
SMD 1165 and SMD 1168 had been very well documented 
for the expression of certain proteins that were protein 

sensitive [49]. The host strains, SMD1165 (his4 prb1) and 
SMD1168 (his4 pep4), were developed by deleting the PEP4 
gene, which encoded for proteinase A, and PRB1 encoded for 
proteinase B [50]. PEP4 and PRB1 protease deficient strains 
were commonly used in inhibiting protein degradation [7].  
 
4.2.4 Selectable markers  
Several selectable markers were available for the molecular 
manipulation of P. pastoris at genetic level. The plasmid of P. 
pastoris had selectable markers that contain antibiotic 
resistance genes such as Shble, bsr and nptII or nptIII which 
confer resistance to antibiotics such as zeocin, blasticidin and 
kanamycin [51]. The most commonly used antibiotic resistance 
genes included Shble gene derived from Streptoalloteichus 
hindustanus that confered resistance to drug Zeocin and the 
blasticidin S deaminase gene (BSD) from Aspergillus terreus 
which confered resistance to blasticidin [52, 53]. The 
auxotrophic strains contain genes that are used as selectable 
markers include HIS4 (histidinol dehydrogenase gene) from 
either P. pastoris or S. cerevisiae and ARG4 
(argininosuccinate lyase gene) from S. cerevisiae [51]. 
However, there were certain limitations with the use of certain 
selectable marker genes for example Zeocin and blasticidin 
were bit expensive and the URA3 and ADE1 strains of P. 
pastoris were slow-growing but if these strains were 
transformed with vectors containing the complementing 
biosynthetic genes (i.e. ADE1 or URA3) growth rate similar 
to that of wild strain could be attained [51].  
 
4.2.5 Expression vector and secretion signal 
P. pastoris vector system was a typical E. coli-based shuttle 
vector system which means that they can propagate in two 
different host species [54]. The expression vectors in the P. 
pastoris were mainly composed of three sequences: promoter 
sequence (most often AOX1) in 5′ region; transcriptional 
termination sequence in 3′ region which was essential in the 
processing and polyadenylation of messenger RNAs; and one 
sequence that contains single or multiple cloning sites (MCS) 
essential for the insertion of foreign DNA/ the gene of interest 
[55]. 
The vectors also contain an origin of replication for 
maintenance of plasmid in E. coli and selectable markers for 
selection of transformant colonies from either organism [54]. 
Drug resistance genes such as Kan, Shble, Bsd, Amp, or 
FLD1 were present that confered resistance to geneticin, 
zeocin, blasticidin, ampicillin and formaldehyde respectively 
[54, 57]. Signal sequences derived from the P. pastoris acid 
phosphatase pho1p or the S. cerevisiae α-mating factor were 
also present to generate in-frame gene fusions in vectors used 
for the expression of heterologous proteins that were 
ultimately secreted from the host cell. It has been observed 
that plasmids used in the P. pastoris expression system can 
produce both extracellular and intracellular proteins [51]. 
 
4.3 Protein glycosylation in P. pastoris 
For certain therapeutic proteins such as monoclonal 
antibodies, interferons and erythropoietin, glycosylation was a 
crucial element that palyed important role in acquiring 
complete biological and functional activity [58]. P. pastoris 
was an organism capable of producing a variety of active 
proteins with N- and/or O-linked glycans [59, 60]. The 
polypeptides after being translocated to the endoplasmic 
reticulum were either linked to asparagine residues (N-
glycans) or to serine or threonine residues (O-glycans). 
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4.3.1 O-linked glycosylation 
O-linked glycosylation in yeast was different from that of 
mammalian O-glycosylation and it is known that in P. 
pastoris O-linked oligosaccharides were mainly composed of 
mannose (Man) residues arranged in form of short linear 
chains of α-1, 2-linked mannans with β-1, 2-linked or 
phosphorylated mannose at the outer ends [60]. In mammals, 
O-linked oligosaccharides were composed of a variety of 
sugars including N-acetylglucosamine, galactose (Gal) and 
sialic acid (NeuAc). It had been discovered that there were 
five native protein O-mannosyltransferases (PMTs) that 
initiated O-linked glycosylation and grouped into subfamilies 
PMT1, PMT2 and PMT4. The PMT1 and PMT2 subfamily 
genes played major role in O-linked glycosylation [61]. 
 
4.3.2 N-linked glycosylation 
N-linked glycosylation was an important fundamental post 
translational modification that played a pivotal role in protein 
folding, pharmacodynamics behaviour and biological 
functions of various therapeutic proteins. N-glycosylation was 
evolutionarily conserved in almost all life forms including 
eukaryotes, bacteria and even archaea [62, 63]. It had been 
observed that membrane-bound and secreted proteins with 
essential biological activity were mainly N-glycosylated in 
mammal [64]. Generally, the core structure of N-glycans 
consisted of two N-acetyl glucosamine and three mannose 
residues forming a branch [65]. Describing the classical 
pathway of N-linked glycosylation, the oligosaccharide core 
unit, Glc3Man9GlcNAc2 (Glc=glucose, GlcNAc=N-acetyl 
glucosamine) was transferred to the asparagine residue in the 
recognition sequence Asn-X-Ser/Thr in the endoplasmic 
reticulum and finally matured in Golgi apparatus [66]. Finally, 
the oligosaccharides produced in P. pastoris did not have any 
terminal α-1,3-linked mannosylation as mannosylation was 
found to reduce activity of therapeutic proteins and rendered 
them unsuitable for pharmaceutical use in humans. However, 
Pichia had been engineered to the mammalian N-
glycosylation pathway [67]. 
 
5. Advantages of using P. pastoris as an expression host 
system 
Yeast strain P. pastoris has several advantages over other 
eukaryotic and prokaryotic expression systems as far as 
recombinant protein production is concerned [68]. The 
distinguishing features of P. pastoris include rapid growth in 
high cell densities using minimal media, coupled with ease of 
high cell-density fermentation even in continuous and large 
scale fermenters [69]. P. pastoris showed high levels of 
productivity in an almost protein-free medium with 
elimination of endotoxin and there was no chance of 
bacteriophage contamination [70]. P. pastoris is capable of 
genetic manipulations e.g. gene targeting, high-frequency 
DNA transformation, cloning by functional complementation, 
high levels of protein expression at the intra- or extracellular 
level [7, 23]. This methylotropic yeast is capable of carrying out 
diverse post-translational modifications that included 
polypeptide folding, glycosylation, methylation, acylation, 
proteolytic adjustment, and targeting to subcellular 
compartments and has the ability to engineer secreted proteins 
that can be purified by simple processing from growth 
medium without harvesting the yeast cells themselves [55, 70]. 
Since P. pastoris has the unique ability of thriving in a 
methanol rich media, with consumption driven by the alcohol 
oxidase I (AOX1) promoter which is employed for methanol-

dependent expression of a desired protein product and hence 
it can simplify the downstream processing steps for a 
recombinant protein production [71]. It has been observed that 
yeast cells may lead to hyperglycosylation of the recombinant 
proteins which may result in altered pharmacokinetics of the 
desired product. Thus to mitigate this problem, 
glycoengineered P. pastoris cells have been developed that 
express antibodies with superior volumetric productivity [72]. 
Yields of up to 1.4 g/L of humanized IgG have been reported 
with glycoengineered P. pastoris which is far superior to 
mammalian systems [73]. Also expression systems like 
bacteria, S. cerevisiae or the insect cell/baculovirus failed to 
express certain proteins so efficiently that were successfully 
produced in P. pastoris in a functionally active form [74, 75].  
 
6. Conclusion and perspectives 
Yeast expression systems namely, S. cerevisiae and P. 
pastoris are gaining popularity as successful biological 
expression systems for production of recombinant proteins for 
their utility in medical and research fields. For heterologous 
protein production, P. pastoris is one of the most widely used 
and standard tool that favours the different experiments of 
genetic cloning in molecular biology. Though, P. pastoris is 
the unique host with some remarkable features for 
recombinant protein production. However, to achieve the 
maximum benefit in terms of higher yield of target proteins, 
the transformation process can be optimized for more efficient 
and large scale production in large biofermentors employing 
minimum nutritional requirements, thus making the process 
inexpensive, rapid and easy to perform at industrial scale for 
production of suitable products. 
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