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Studies on detection of tetracycline in honey using 

screen printed electrode with buffer electrolytes 
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Abstract 
The main objective of this work is to study the electrochemical oxidation using buffer electrolytes for 

detecting tetracycline in honey. The three electrode system was used to conduct the optimization studies 

of different buffers (citric acid (CA), sulphuric acid (SA) and hydrochloric acid (HA)) at pH ranging 

from 2 to 6 using CV. SA buffer at pH 4 provided the maximum peak current of 1.529 mA at 1.399 V 

and was optimized for further studies. The detection of TCHC at concentration ranging from 10 µl/l to 

100 µl/l was studied by both CV and DPV with a screen printed electrode. From the calibration curve of 

CV and DPV at different concentration of TCHC, it was observed that DPV shown a better detection 

with correlation coefficient of 0.9709. Under the optimized conditions, the response of DPV was used to 

detect the TCHC concentration in honey. The limit of detection was found to be 0.77 µl/l with a 

percentage recovery ranging between 74 and 116.7%. 
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1. Introduction 

Honey is a natural sweetener consisting of carbohydrates, enzymes, amino acids, polyphenols, 

vitamins and minerals in smaller amount. The honey bees collect the floral nectar from 

different sources of flowers and plants. The nectar is converted into honey through natural 

regurgitation and evaporation process in gastrointestinal tract (GIT) of bees. These bees are 

prone to several bacterial infections like American foulbrood and European foulbrood 

(Forsgren et al., 2018) [8] and fungal diseases. In order to protect the lives of honey bees from 

various infectious diseases and to increase the production of honey so as to meet the increasing 

demand owing to its therapeutic properties, the apiculturist treats the bees by feeding them 

with antibiotics. This in turn results in the occurrence of antibiotics in honey (Sapna & 

Nimisha, 2010) [21]. Tetracycline (C22H24N2O8) is one of the most prevalent antibiotics used by 

apiculturists to treat honey bees for various bacterial and fungal infections. Several studies 

have reported tetracycline residues in honey (Taylor et al.,2006) (Zhang et al., 2019) [25]. 

Tetracycline has a molecular weight of 444.44 and a melting point of 170-173°C. Each unit 

has a di(methyl) amino substituent and a phenol substituent at positions 4 and 10 respectively 

(Abraham et al., 2020) [1] (Masawat & Slater, 2007) [15]. Continuous exposure to even mild 

dosages of TC can cause several health-related ailments such as eyesight issues, tooth staining, 

and allergic reactions (Al-Waili et al., 2012) [2] and is toxic to humans (Korkmaz et al., 2017) 
[12].  

Capillary electrophoresis (Nozal et al., 2004; J. Zhou et al., 1999) [17, 26], fluorescence (Tan et 

al., 2013) [22], UV-Vis spectroscopy, liquid chromatography- tandem mass spectrometry 

(Zhang et al., 2019) [25], LC-MS/MS (Ribeiro et al., 2018) [19] and dispersive solid-phase 

extraction HPLC–MS/MS (Pang et al., 2021) [18] have all been used to determine tetracycline. 

Many aptasensors (Huang et al., 2019) [10] (Li et al., 2019) [13], molecularly imprinted 

polymers (Devkota et al., 2018), paper-based analytical devices (Huy et al., 2020; T. Zhou et 

al., 2019) [11, 27] and disposable immunosensors (Conzuelo et al., 2013) [6] have been developed 

for the detection of tetracycline. (Lorenzetti et al., 2020) [14] developed a disposable rGO-based 

screen-printed electrodes for detecting tetracycline in milk and river samples using an 

adsorptive transfer stripping DPV approach. (Ni et al., 2011) [16] used differential pulse 

stripping voltammetric technique for determining tetracycline, oxytetracycline and 

chlortetracycline simultaneously by electro reduction at a hanging mercury drop electrode. 

(Hayat & Marty, 2014) [9] highlighted the advantages of using screen printed electrodes for 

detection of various analytes and emphasized on its sensitivity and portability. 

www.thepharmajournal.com


 

~ 2842 ~ 

The Pharma Innovation Journal http://www.thepharmajournal.com 

(Bougrini et al., 2016) [3] developed a MIP biosensor for 

detecting tetracycline in honey. The sophisticated analytical 

methods for tetracycline detection require expensive 

instruments and skilled technicians, high operation cost and 

detailed sample preparation procedure. Screen printed 

electrodes (SPE) are considered to be an alternative to the 

existing analytical method owing to its low cost, miniaturized 

size and easy sample preparation in less time. Studies on 

disposable SPE for tetracycline detection are in progress. 

(Veseli et al., 2019) [24] developed a carbon SPE modified 

with sodium dodecyl sulfate using phosphate buffer (pH 8.5) 

as electrolyte. Recently (Cánovas et al., 2021) [5] studied the 

electro oxidation of the tetracycline in pH ranging from 2 to 

12 using unmodified SPE by square wave voltammetry. Not 

much work has been reported on detection of tetracycline 

antibiotics using mild acids as buffer electrolytes, as they are 

readily available, easy to handle and are low cost. The main 

objective of this work is to study the electrochemical 

oxidation of tetracycline in different buffer electrolytes using 

voltammetric technique and to detect tetracycline in honey by 

using screen printed electrode sensor.  

 

2. Materials and Methods 

2.1 Materials 

Tetracycline hydrochloride (TCHC), sulphuric acid (SA), 

anhydrous citric acid (CA), hydrochloric acid (HA) and 

sodium hydroxide were purchased from Sigma Aldrich and 

supplied by M/s. Ponmani Scientific pvt. ltd., Trichy, Tamil 

Nadu, India. Honey samples (free from any antibiotic 

residues) were purchased from an apiculture farm in Theni, 

Tamil Nadu. The chemicals used in this study were all 

analytical grade and used directly with no purification. 

 

2.2 Preparation of the electrolytic buffers and tetracycline 

standards 

The buffers were prepared from 0.1 N Sulphuric acid, 0.1 N 

Hydrochloric acid, and 0.1M Citric acid, which were freshly 

prepared before each electrochemical measurement. The 

buffers SA, HA, and CA were prepared at different pH 

ranging from 2 to 6 by adding an acid/alkali for pH 

adjustment. The tetracycline standard stock solution was 

prepared by adding 10 g of TCHC in 10 ml ethanol and stored 

in dark refrigerated conditions. The working solutions were 

prepared from the standard stock solution freshly before every 

measurement. 

 

2.3 Three electrode system 

The three electrode system was used for conducting the 

optimization studies of the buffer and its pH. It consists of an 

electrochemical cell (ECC) with a carbon working electrode 

(WE), Ag/AgCl reference electrode (RE) and a platinum 

counter electrode (CE) (fig.1). The ECC is connected to a 

palmsens4 electrochemical interface. Cyclic voltammetry 

(CV) is used to determine the reduction-oxidation process 

occurring in a particular sample. A sweeping potential (V) is 

supplied to the sample through the working electrode, and the 

current output is measured. For each peak, there is an equal 

amount of current flowing, and this is indicative of the 

concentration of the redox molecules present. The 

optimization studies were conducted using CV with the t 

equilibration of 10 s, E begin at 0, E vertex 1 at -2.0 V, E 

vertex 2 at +2.0 V, step potential of 0.01 V and a scan rate of 

1.0 V/s 

The buffers 0.1 N sulphuric acid, 0.1 N hydrochloric acid and 

0.1M citric acid at pH ranging from 2 to 6 were 

electrochemically analyzed by CV to study the oxidation and 

reduction potential using a three electrode system. In all the 

buffer electrolytes, the buffer pH which gives the highest 

current response was optimized. The optimized pH in each 

buffer was then compared to optimize the buffer, which is 

further used to conduct the DPV studies for the detection the 

TCHC residues. 

 

 
 

Fig 1: Three electrode system consisting of WE, RE and CE 

 

2.3.1 TCHC detection using Screen printed electrodes 

The screen printed electrodes (SPE) are a miniaturized 

version of a three electrode system in which the WE, RE and 

CE are printed on a strip and is connected to the palmsens4 

electrochemical interface by means of an adapter as shown in 

fig.2. SPE were used to study the electro-oxidation behavior 

of TCHC in the optimized buffer and pH by CV and 

differential pulse voltammetry (DPV) technique. The DPV 

was conducted with the following voltammetric settings. The 

potential scan from -2V to +2V, with step E of 0.01V, E pulse 

0.2V, t pulse of 0.02 s and a scan rate of 0.05V/s 

 

 
 

Fig 2: Screen printed electrode 

 

2.3.2 TCHC detection in honey 

Honey samples were spiked with TCHC at a concentration 

ranging from 10 µl/l to 100 µl/l. The DPV technique was 

optimized and was used to determine TCHC resides in spiked 

honey samples, using the optimized experimental conditions. 

The spiked honey samples were analyzed in triplicate and the 

recovery (%) was calculated from the calibration curve of 

DPV. 
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3. Results and Discussion 

3.1 Optimization of buffer and pH 

3.1.1 Effect of pH on the CV of SA buffer 

The CV studies were conducted for the SA buffer with pH 2, 

pH 3, pH 4, pH 5 and pH 6 and their voltammograms are 

shown in figure.3. It was observed that in the anodic region 

two oxidation peaks appeared for all the pH buffers. The first 

oxidation peak occurred at a negative potential (around -

0.390V to -0.560 V) with a maximum peak current of 1.271 

mA at a potential of -0.460 V for pH 6 SA buffer. The second 

oxidation peak was observed at a potential ranging from 

0.05V to 1.399 V with the highest peak value of 1.529 mA at 

1.399 V for pH 4 SA buffer. It has to be noted that the 

intensity of secondary oxidation at the positive potential is 

higher than the primary oxidation that occurred at the 

negative potential. As the pH increases from 2 to 4, the 

oxidation also increases resulting in higher current values. at 

pH 5 there is a drop in the current both in the first and second 

peaks.  

 

 
 

Fig 3: CV of 0.1N H2SO4 buffer from pH 2 to 6 

 

3.1.2 Effect of pH on the CV of CA buffer 

Fig.4 shows the CV curves of CA buffer at pH 2, pH 3, pH 4, 

pH 5 and pH 6. The oxidation peak occurred only once for pH 

2, 3 and 5 CA buffers, whereas for pH 4 and pH 6 CA buffer 

it occurred twice. The current value increases with increasing 

pH till pH 4 and then started to decrease in pH 5 and pH 6 

buffers. For pH 4 CA buffer, a maximum peak current of 

1.345 mA and 1.344 mA was observed at -0.029 V and at -

0.039 V respectively. The reduction occurred in the cathodic 

region.  
 

 
 

Fig 4: CV of 0.1M Citric acid buffer from pH 2 to 6 
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3.1.3 Effect of pH on the CV of HA buffer 

The cyclic voltammograms of HA buffer were shown in fig.5. 

From the CV curves it was observed that the current value 

shows an increasing trend with increase in the pH of HA 

buffer in both the first and second oxidation peaks. For the 

first oxidation peak, the current value increases from 0.825 

mA to 1.25 mA (highest current value observed) in the 

potential between -0.32 V to -0.45 V. The current for the 

second oxidation peak also shows an increasing trend similar 

to the first oxidation peak but lies in the positive potential 

ranging from 0.04 V to 1.439 V. The highest peak current in 

both first and second oxidation peaks was observed in pH 6 

CA buffer. 

 

 

 
 

Fig 5: CV of 0.1N HCl buffer from pH 2 to 6 

 

3.1.4 Optimization of buffer electrolyte and pH 

The cyclic voltammogram of the buffers (pH 4 of SA, pH 6 of 

HA, pH 4 of SA) that shown maximum peak current was 

selected and compared to optimize the best buffer for the 

detection of TCHC  

 

 
 

Fig 6: pH vs Peak current of buffers – HA, CA and SA 

 

From fig.6, it was observed that the buffer SA with pH 4 

exhibited maximum peak current of 1.529 mA at a potential 

of 1.399 V. hence the SA buffer with pH 4 has been 

optimized for further studies on the detection of TCHC in 

honey. 

 

3.2 CV for TCHC detection 

Fig.7-a shows the response of SA buffer (pH 4) to the 
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addition of TCHC. The anodic peak current obtained for SA 

buffer decreased significantly with the addition of TCHC at 

1.259 V having a current value of 0.559 mA. Also, an 

additional peak occurred at a potential of 0.13 V with 1.252 

mA which may be due to the oxidation of TCHC as no peak 

occurred at the given potential in the CV of pH 4 SA buffer. 

The electro-oxidation of TCHC at different concentration in 

SA (pH 4) buffer was studied with CV as shown in fig. With 

the addition of TCHC, initially the current value shows an 

increasing trend with increasing concentration at the first 

peak. Whereas, in the second peak, the current value shows a 

declining trend with the increasing concentration of TCHC. 

This trend of increasing in the current value followed by a 

declining trend may be attributed to the oxidation of TCHC in 

the presence of mild acids and forming an anhydrotetracycline 

which on further cleavage yields apoterramycin. (Ricardo et 

al., 2016) reported that the protonation of the dimethyl-amino 

group results in the oxidation of TCHC at an acidic pH. This 

protonation was mainly due to the addition of –OH group 

with the phenolic unit in the TCHC thereby resulting in the 

oxidation reaction. As the concentration of TCHC increases, 

more protonation occurs, thereby resulting in the drop in peak 

current value, which is evidenced from the cyclic 

voltammogram. 

The background response of SA buffer (pH 4) as electrolyte 

exhibits an anodic wave on the positive scan in the region of 

+1.339 V. With the addition of TCHC, two peak anodic signal 

for oxidation of tetracycline was observed beginning at +0.3 

V. The first peak occurred in the region of 0.03 V to +0.13 V 

(peak a) and +1.259 to +1.379 V (peak b) respectively. These 

results were comparable to results reported by (Masawat & 

Slater, 2007) [15] in the determination of tetracycline using 0.1 

M potassium dihydrogen phosphate at pH 2 using a screen 

printed Au electrode. Anodic current peak varied linearly with 

the scan rate when tetracycline was treated with potassium 

dihydrogen phosphate buffer at an acidic Ph. Also the 

oxidation of tetracycline followed a diffusion controlled 

mechanism. Fig.7-b shows the calibration curve with the 

linear regression equation y = 0.0717x+0.5874 with a 

correlation coefficient R2of 0.9606. 

 

 
 

Fig 7 a. CV response of SA buffer with pH 4 

 

 
 

Fig 7b: CV Calibration curve at different concentration of TCHC 
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3.3 Differential Pulsed Voltammetry for TCHC detection 

Fig.8-a shows the differential pulsed voltammogram of TCHC 

at different concentrations ranging from 10 µl/l to 100 µl/l. 

The potential scan from -2V to +2V, with step E of 0.01V, E 

pulse 0.2V, t pulse of 0.02 s and a scan rate of 0.05V/s. Fig.8-

b shows the calibration curve for DPV at different 

concentration of TCHC with an R2 value of 0.8225. The 

differential pulse voltammogram for TCHC in 0.1 N SA 

buffer at pH 4 showed a decrease in current peak from 0.466 

mA (at a potential of 0.968 V) to 0.146 mA (at a potential of 

0.829 V) as the concentration increases from 10 to 100 µl/l. 

At negative potential the increase in concentration of TCHC 

increases the current response whereas at positive potential 

the maximum peak current decreases with increasing 

concentration. However, as the oxidation of TCHC occurs at 

the potential around 0.9 V, the latter trend has been 

considered in this study. 

 

 
 

Fig 8a: DPV of different concentration of TCHC (a) 10 µl/l (b) 20 µl/l (c) 30 µl/l (d) 40 µl/l (e) 50 µl/l (f) 60 µl/l (g) 70 µl/l (h) 80 µl/l (i) 90 µl/l 

(j) 100 µl/l 

 

 
 

Fig 8b: Calibration curve for DPV at different concentration of TCHC 

 

(Devkota et al., 2018) [7] reported a peak at 0.77 V was that of 

tetracycline oxidation in his work as no peak was recorded for 

the blank sample under the same experimental conditions. 

Preliminary studies by cyclic voltammetry showed an 

irreversible oxidation peak at the same potential. The 

oxidation peak increased linearly with the square root of scan 

rate. (Calixto et al., 2012) [4] observed a linear response at a 

concentration of 4.00-40.0 μmol l-1 with a LOD of 2.80 μmol 

l-1using DPV for tetracycline detection in environmental water 

samples. The amount of H+ ions in the SA buffer also 

contributes to the peak potential and the current response in 

the oxidation of TCHC.  

On comparing the fig.8-b and fig.9-b it was observed that the 

CV for TCHC oxidation shows an increasing linear trend 

whereas the DPV exhibited a decreasing linear trend. 

 

3.4 Determination of tetracycline in honey 

The above method of detecting tetracycline using SA buffer at 

pH 4 was applied for the determination of TCHC residues in 

honey. Honey samples were spiked with different 
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concentration of TCHC ranging from 10 µl/l to 100 µl/l. 

Using the calibration curve (fig.8-b) and the linear regression 

equation y= -0.0373x + 0.4848 with a correlation coefficient 

of 0.9709, the limit of detection was found to be 0.77 µl/l and 

their recovery was found to be ranging from 74 – 116.7% as 

shown in table 1. It was also observed that the recovery was 

found to decrease for concentration above 60 µl/l.  

 

Table 1: Honey samples were spiked with different concentration of TCHC ranging from 10 µl/l to 100 µl/l. 
 

Spiked (µl/l) 10 20 30 40 50 60 70 80 90 100 

Found (µl/l) 7.45 15.62 25.42 37.13 57.41 70.03 72.85 86.42 86.77 88.03 

Recovery (%) 74.57 78.11 84.74 92.83 114.83 116.72 104.07 108.02 96.41 88.03 

 

4. Conclusion 

The present study used 0.1 N SA as a buffer electrolyte for 

the detection of TCHC using a carbon screen printed 

electrode by differential pulse voltammetric technique. Some 

of the advantages of this method are easy sample preparation 

compared to the conventional analytical technique. The limit 

of detection of this SPE sensor using SA electrolyte was on 

found to be 0.77 µl/l with a percentage recovery ranging from 

74-116%. The low cost, minimum reagent requirement and 

rapid detection with better accuracy make this method an 

alternative technique for tetracycline detection honey 

samples.  
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