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Predicting yield attributes of maize through image 

processing 
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Abstract 
Currently, the yield attributes of maize ears (such as ear length, kernel count, kernel weight, and so on) 

are often assessed by hand throughout the breeding process, which necessitates a large number of 

workers. Furthermore, subjective mistakes are difficult to prevent, and manual measuring efficiency is 

quite poor. The method described in this work can quickly assess yield attributes linked to breeding traits 

of numerous maize ears, significantly improving maize variety evaluation efficiency. From photographs 

of ears taken from field trial plots, a low-cost ear digital imaging system was developed that offers 

estimations of ear and kernel characteristics such as ear number and size, kernel number and size, and 

kernel weight. Image J, an open-source program, is used here to process the images using a script that 

runs in batch mode. The total kernel number was determined from the number of visible kernels on the 

picture and the average kernel size was used to calculate kernel weight. Ground truth measurements and 

data obtained by image processing have an excellent agreement in terms of accuracy and precision. The 

procedure also entails utilizing a mobile camera to picture scattered kernel samples and counting them 

using the software. Results demonstrate that this is a fast (less than a minute per sample) and reliable 

approach that may be extensively used for estimating yield attribute and kernel counting. 

 

Keywords: maize, yield attributes, image-processing, estimation, correlation 

 

1. Introduction 

Prediction of crop yield in agriculture is a paramount snag as the yield essentially hangs on 

weather conditions, pesticides, and many more. Decision-making concomitant to agricultural 

risk management and future conjecture needs unerring counsel concerning crop yield’s history 

(Hajir Almahdi, 2020). To meet the requirements of enormous population growth there is a 

requirement for field-level statistics as it is essential to plan at micro-level and crop insurance 

exceptionally (Anup, 2005). Accurate and timely assessment of crop yield is an essential 

process to ensure the adequacy of the food supply. In the past, estimates of crop yield were 

done, in general, from the expertise of farmers or, as claimed by Geipel, Link and Claupein, 

(2014) “better estimations can be drawn from destructive sampling procedures in 

representative areas”.  

For yield estimation, basic mathematical or statistical relationships based on agronomic and 

meteorological data were established (Dadhwal & Ray, 2000), as well as crop development 

models (Thorp, De Jonge, Kaleita, Batchelor, and Paz, 2008); Later remote sensing techniques 

evolved as an effective tool for assessing and monitoring crop yield at a lower cost than other 

methods providing a spatial and periodic, comprehensive view of real crop state (Geipel et al., 

2014). But these methods are expensive, time-consuming, and laboriousand require trained 

personnel and expertise. So it is mandatory to identify crop growth monitoring and prior 

estimation of yield using unbiased, systematized, and quicker methods like image processing 

than going for traditional methods.  

Maize or corn (Zea mays L.) is an important annual cereal crop of the world belonging to the 

family Poaceae. It is the third leading crop of the world after rice and wheat (Sandhu, Singh, & 

Malhi, 2007). The world production of maize was 967 million metric tons (MMT) and in 

India, its production was 23 MMT in 2013–14 (India maize summit, 2014). It is considered a 

staple food in many parts of the world. The measurement of kernel traits is important for maize 

breeding and the evaluation of its yield (Lovemore Chipindu, 2020) [2]. 

Ears are a primary agricultural product of maize, which has led the majority of previous 

phenotyping efforts to focus on aspects of yield, such as ear size, kernel row number, and 

kernel structure and dimensions.
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Additional information about the crop might be obtained and 

farmers could make projected kernel weight could be 

quantified fast and precisely. Recently, image processing, 

machine learning, and deep learning have shown great 

potential in progressing the digital capabilities needed for the 

future of agriculture. These techniques have shown to be 

reliable in high-throughput phenotyping and in enabling 

farmers to make a real-time decision, something that was 

previously not possible. (Saeed Khaki, 2020) [1]. 

Few method sallow the extraction of ear and kernel features 

through image processing.In the perspective of breeding, 

research has indicated that yield components have a higher 

heritability than overall yield. [23, 24]; allowing for independent 

selection for these qualities and then combining the 

responsible genetic loci to generate a genotype with higher 

performance or developing a selection index through trait 

combinations [24]. According to Miller et al. [6], more could be 

learned about the genetic underpinnings of yield components 

and how to improve those utilizing current and future maize 

genetic resources if its ear and kernel traits could be 

automatically evaluated with higher objectivity and precision. 

Using ear digital imaging, this study presents a simple, high-

throughput, and robust approach for collecting yield 

components (ear and kernel properties) from harvested maize 

ears (EDI). 

 

2. Materials and Methodology 

Maize Hybrid Co (MH) – 6 was chosen for the research. The 

experiment was carried out at the Eastern block (75) in Tamil 

Nadu Agricultural University, Coimbatore [11.0087° N, 

76.9404° E and altitude 300m]. For analysis 100 plants were 

randomly selected from the field and the data on cob 

attributes and their related plant characters were recorded for 

each selected plant using the standard method of 

measurements.  

 

2.1 Photo acquisition 

Harvested ears of randomly selected plants were collected 

from the field, numbered accordingly, and were dried upto 

12-18% moisture content. First, the weight of cobs with and 

without sheath was recorded using Infra Digi precision 

balance with a resolution of 0.01gm. Then manual 

measurements of sheath length, sheath weight, cob length, 

cob width, and number of rows per ear, number of kernels per 

row, kernel length, kernel width, and kernel weight were 

taken. 

First, the images were acquired by placing each selected cob 

one by one on a black chart using a mobile camera (16 MP 

rear camera) mounted on an Arm Stand Holder at a height of 

60 cm from the mobile camera to the table at which maize is 

placed and positioned at nadir. The process of photo 

acquisition under diffused lighting conditions was setup in our 

computer lab. At the same height as cobs, an image of a ruler 

was taken to convert pixel values to known measurements. 

The images were numbered according to cob number and 

saved in a single folder as raw RGB images without any 

conversion for batch processing. To validate kernel counting, 

based on image versus manually counted kernels the kernels 

of selected ears were shelled using Mini hand corn thresher, 

winnowed, kept separately in plastic bags, and were 

numbered respectively to the ears. The number of kernels per 

cob was counted manually and the kernel weight of each cob 

was measured separately using Electronic Compact Digital 

Kitchen SF-400A Weighing Scale. The kernels of each cob 

were then imaged separately under the same setup as cobs and 

saved in a single folder by their cob number which is then 

batch processed. 

 

2.2 Image Processing 

Image analysis was conducted in Fiji [an extension of ImageJ 

software-which has a collection of plugins that make 

scientific picture analysis easier]. It is open-source software 

that will help us to extract yield component parameters (i.e. 

ear and kernel attributes) using a series of steps as per 

Makanza R. et al. (2018) [16]. 

The following steps were performed using built-in ImageJ 

plugins and the process was recorded as a macro to run 

subsequent images of cob. The images were pre-processed at 

first to obtain an even dark background using the background 

subtraction method with a threshold of 100. Then for 

segmenting individual kernels, CLAHE (Contrast Limited 

Adaptive Histogram Equalization) process is selected which 

helps in overcoming the noise problem by reducing noise by 

setting the parameters of the CLAHE plugin as (I) Block Size 

to 29 (II) No. of histogram bins to 250 and (III) Maximum 

slope to 5. 

After this using the edge enhancement process the images 

were sharpened with an unsharp mask plugin with a radius of 

15 and mask as 0.70 followed by conversion of images to 8-

bit format. The images of low contrast were dealt with an auto 

local threshold method called Phansalkar whose parameters 1 

& 2 were kept to default values as an increase in their default 

values proved to be of no effect while the radius of the local 

domain was set to 15 and the option of a white object on 

black background was selected to threshold the image. 

The images were then binarized using convert to binary 

plugin and fill holes option was selected to avoid kernel split 

during adjustable watershed step followed later with a 

tolerance of 3. After the successful segmentation of kernels, 

the measurement of yield attributes was initialized. 

The threshold is calculated using the equation 

 

T(x, y) = m(x, y)[1 + pe−qm(x,y)] + k (
s(x, y)

R
) − 1 (1) 

 

Where, m = mean, 

p & q = Phansalkar’s exponential constants, 

k = constant in the range of 0.2-0.5, 

s = standard deviation of pixel intensities, 

R = dynamic range of standard deviation which is 0.5 for 

normalized images. 

 

2.3 Kernel counts and attributes 

The segmented images were then analyzed using analyze 

particles plugin after setting its size to 0.03-1.00 pixels2 and 

the circularity to 0.05-1.00 which helps in identifying the 

kernels visible on the image. Then the kernel length and width 

of the cob image were measured as the distance between two 

points along the major and minor axis of ear and kernel which 

requires setting the scale to a known distance at first. The 

particle analysis plugin also helps us in measuring the total 

kernel area, average kernel area, and average perimeter of the 

ear in addition to kernel count, kernel weight, and total kernel 

number. 

 

2.4 Ear count and attributes 

The analysis can be done not only on single cob images but 

we can also analyze several cobs on a single image. To find 
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the number of cobs in an image, the images were filtered out 

via a Gaussian blur filter with the sigma set to 10 for 

smoothing. Then they were binarized followed by the fill 

holes plugin and watershed process and analyze particles 

plugin was selected to count the number of cobs on a 

particular image. Ear length and width were measured as the 

distance between two points along the major and minor axis 

of a single ear. 

 

2.5 Modeling of Kernel weight and Kernel Count 

To count kernels via image the shelled kernels of each cob 

were spread to an area of 60 cm wide and 40 cm long on a 

black chart and images was taken as the same setup as cobs 

and the following steps were carried out through ImageJ built-

in plugins to count kernels and were recorded as a macro for 

subsequent analysis. The color threshold of the image was 

first adjusted, then binarized, and was processed using the 

watershed plugin to split individual kernels from others. Then 

to get kernel count, analyze particles plugin is selected and 

the size and circularity of objects are adjusted to get an 

absolute count. 

From the number of visible kernels on the image (kn) (Eq. 2, 

r=0.98***), a linear regression model for predicting the total 

kernel number on each ear was constructed. The association 

between estimated and measured kernel parameters was 

evaluated using Pearson's correlation coefficient r. 

 

Total Kernel Number = 2.4051 * kn – 6.7334 (2) 

Where kn = number of visible kernels on the image. 

The kernel weight model was created using a linear regression 

model between average kernel length (𝑘𝑙̅) and average kernel 

weight (total kernel weight divided by the total number of 

kernels), both of which were physically measured using a 

digital balance with a precision of 0.01 g. Kernel weight was 

recorded at moisture content levels ranging from 11 to 13%. 

This was done with 100 ears of different kernel sizes. The 

visible region of the segmented ear was used to calculate the 

average kernel length. To build a model that correlates kernel 

length into kernel weight, (𝑘𝑙̅) was plotted against the average 

measured kernel weight for each ear measured manually (Fig. 

6a). The model was then tested, and it appeared to be correct 

in estimating the kernel weight (Fig. 6b). 

 

Average Kernel Weight (g) = (𝑘𝑙̅ ∗ 0.7435 – 0.155) (3) 

 

2.6 Estimation of Kernel Weight 

Given that Eq. 2 gives the total kernel number and Eq. 3 gives 

the average kernel weight, the total kernel weight (Eq. 4) is 

calculated by multiplying the two equations: 

 
Total Kernel Weight (g) = (2.4051 * kn – 6.7334) * (𝑘𝑙̅ ∗ 0.7435 – 0.155) (4) 

 

The predicted total kernel weight was confirmed using 100 

cob images taken under controlled lighting conditions. 

 

 
 

Graph 1: Steps involved in cob image processing and mining of data 
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Graph 1: Steps associated with image processing of kernel 

 
Table 1: Correlation between Actual and Estimated maize yield attributes 

 

Variables Correlation Coefficient (ρ) R² Regression Equation 

Image-based Kernel Count Vs Manual Kernel Count 0.9906 0.9815 y = 0.9794x + 0.0019 

Estimated Ear Length (cm) Vs Measured Ear length (cm) 0.9553 0.9127 y = 0.9698x + 1.0451 

Estimated Ear Width (cm) Vs Measured Ear Width (cm) 0.9535 0.9092 y = 0.8989x + 0.3615 

Kernel Weight (g) Vs Kernel Length (cm) 0.9997 0.9995 y = 1.4194x + 0.2359 

Estimated Kernel Weight (g) Vs Measured Kernel Weight(g) 0.9906 0.9815 y = 0.9794x + 0.0019 

 

 
 

Fig 1: Regression modeling and Correlation between image-based Kernel Count and manual Kernel Count 

 

 
 

Fig 2: Regression modeling and Correlation between measured and estimated Ear Length 
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Fig 3: Regression modeling and Correlation between measured and estimated Ear Width 

 

 
 

Fig 4: Regression model for predicting Kernel Weight from Kernel Length 

 

 
 

Fig 5: Regression modeling and Correlation between measured and estimated Kernel Weight 

 

3. Result & Discussion 

3.1 Kernel Count and Ear attributes 

As indicated in the methodology section, the kernel count 

model was evaluated using 100 ears collected from randomly 

selected plants in the field. The calculated kernel count from 

entire ears using the model and the actual count of detached 

kernels exhibited a linear connection (ρ=0.98, p<0.001) in the 

data. The identical ears that were utilized for kernel count 

validation were used to compare manual ear length and width 

measurements to those generated by the image processing 

method. For both attributes, the analysis shows a linear 

correlation of (r > 0.95, p0.001) between the two procedures. 
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3.2 Kernel Weight Estimation 

Data were obtained from 100 ears (as detailed in the 

procedure) to validate the kernel weight estimate approach. 

The weight of the measured kernels was then compared to the 

weight of the estimated kernels. The results show that, on 

average, the calculated kernel weight and the measured kernel 

weight are in relatively excellent agreement, with a 

correlation of r = 0.99. 

The number of harvestable kernels with their weight can be 

used to predict maize grain yield. Kernel number, out of such 

two yield factors, typically explains the most variation and is 

highly connected to ear size. Kernel qualities, despite their 

importance, are difficult to assess quickly and correctly, 

mainly because of the necessity for ear threshing before they 

can be measured. The number of rows in one length of the ear 

can be counted manually and multiplied by the number of 

kernels in one length of the ear to get the total kernel count of 

cobs. These manual yield component measurements have 

shown to be effective and were utilized in a divergent 

selection study of the connection between ear length and 

yield, for example. 

The issue with these approaches is the lack of consistency 

inherent in the way data is gathered (which is dependent on 

the training and appreciation of the people committed to that 

work), as well as the time and related expense, which makes 

them most appropriate for very small trials. According to a 

preliminary evaluation, depending on the intended 

measurement, the suggested EDI technique can be twice 

(example: ear count) to five-fold (example: ear dimensions) 

quicker than manual methods. Manual techniques are labor 

demanding, making them more expensive than the EDI 

approach. Because of differences in labor costs, the cost 

difference would vary depending on the location/country. 

Automated measures that are more reliable, quick, and low-

cost might be used in yield component research and crop 

improvement choices. 

Miller et al. [6] presented a kernel counting imaging technique 

based on individual kernel areas. The technique assesses 

kernel size (width and depth) on separated kernels alone. 

While this procedure is quite accurate, it necessitates the 

removal of the kernels from the ears, which may be 

inconvenient when dealing with a large number of ears. 

Similarly, Liang et al. [4] have developed a technique for 

scoring maize kernel characteristics based on line-scan 

imaging, which is not appropriate for field evaluation due to 

time and cost constraints.  

The suggested EDI technique has the benefit of generating ear 

and kernel characteristics data from intact ear pictures. Grift 

et al. [19] created a machine vision-based method to count 

maize kernels on the ear inside a quasi-cylindrical mid-section 

and ear maps, which is comparable to our methodology. 

While their approach is intriguing to some extent, the imaging 

is performed in a soft box with a light reflector and a high-

quality diffused lighting environment. The throughput of this 

sort of imaging setup is its constraint. In the case of ear size, 

the EDI technique revealed excellent agreement between 

humanly measured ear measurements and automated image 

processing findings (Fig. 8). Miller et al. [21] observed similar 

findings. The primary difference between the two systems is 

that the one described by Miller et al. [21] acquires ear pictures 

using flatbed document scanners, whereas the EDI method 

employs an RGB image acquired by the camera in our work, 

it is the mobile camera. Furthermore, while the flatbed 

scanner has the advantage of being able to control lighting 

conditions in the field, the logistics of using it in the field (i.e. 

the need for a computer) and the limited number of ears (3–5) 

that can be scanned at one time make it unsuitable for 

evaluating thousands of ears in a breeding trial. 

The EDI technique also predicts kernel weight based on 

kernel size, allowing for a low-cost yield performance 

evaluation, especially in cases where ear shelling and kernel 

weighing are too expensive or when the necessary equipment 

is unavailable. It's worth noting that this technique doesn't 

account for kernel moisture (as the kernel weight model was 

designed for a range of kernel moisture between 11 and 13 

percent), which can have a big impact on the final weight if 

it's not taken into account. Furthermore, the EDI technique 

does not account for kernel depth when estimating weight, 

which may result in a minor underestimate of the real kernel 

weight in some situations. 

 

4. Conclusion 

The EDI technique has been demonstrated to be a viable 

alternative to standard ear phenotyping methods in this study. 

Hand measures, which generally use calipers and manual 

counting, are more reliable, especially for large numbers of 

ears that are routinely assessed in breeding experiments. The 

accuracy of this approach is primarily dependent on the 

camera's resolution; however, this is no longer a serious 

problem due to recent considerable improvements in the 

resolution of all camera types, including smartphone and 

tablet cameras. As the results show a good correlation with 

the images taken using a mobile camera. The technique will 

be especially beneficial to breeding operations with limited 

operating resources. The ability to combine ear and kernel 

characteristics might aid in the development of cultivars with 

desired farmer qualities such as ear or kernel size. 
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