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Abstract 
In agriculture, the demand is increasing for environment friendly, ecologically compatible techniques 

which can provide food for our growing population by raising both the quality and quantity of farm 

produce. Here, using plant beneficial microbes enables plants to tackle disease-causing organisms and 

insects, and withstand abiotic stress. Objective of this review is to focus on the emergence of the 

agriculturally important micro-organisms in order to establish an ideal agricultural system which supports 

efficient use of nutrients and energy recycling, and thereby preserves natural resources in the ecosystem 

as the environment conditions continue to aggravate due to climate change. This review gives a brief 

overview of the beneficial aspects of microbes in agriculture and several stress situations related to the 

climate change. 
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Introduction 

Microbial ecosystem is the greatest unexplored biodiversity resource on earth (Gibbons, 2015) 
[26]. They represent world's largest mass on earth. Although, microorganisms are smallest 

forms of life, they are known to play a vital role in every continuum of existence. Therefore, in 

today's biological science, microbial ecology based research has become a prominent field. 

Organisms within the vast resources of microbial diversity are bacteria, fungi, algae, protozoa, 

actinomycetes, and infectious agents such as viruses (Jacoby et al., 2017) [31]. Microbial 

populations interact and associate by different means in different activities. Climate change is 

one of the most significant issues impacting life on planet earth. Climate change affects plants 

photosynthesis, root development, general morphology and function as well as their 

interactions. Change in climate not only impacts future crop yields, but it can also alter disease 

and pathogens activities. In response to a variety of biotic and abiotic stressors such as attack 

by insects, and water stress, plants often exude various chemicals. Bacteria in soil sense these 

chemical-based signals and secrete their own chemicals to activate plant's complex plant 

defenses (Mhlongo et al., 2018) [50]. Soil microorganisms make a significant contribution to 

absorption of greenhouse gasses (Cavicchioli et al., 2019) [14], including CO2, methane (CH4), 

nitrous oxide and nitric oxide (NO). As these gasses continue to rise in concentration, soil 

microbes may exhibit feedback responses that may intensify or delay global warming, but 

magnitude of these effects is uncertain. Current research aims to investigate the beneficial 

aspects of microbes in agriculture and several stress situations related to the climate change. 

 

Microorganisms in Agriculture 
Soil microorganisms synthesize different metabolites which affect properties of soil. Plant 
growth and chemical composition and their wellbeing are considered as one of the most 
significant soil fertility factors (Odelade and Babalola, 2019) [57]. Different regulators for plant 
growth are produced from soil microorganisms, such as bacteria, fungi and algae (Gouda et al., 
2018) [28]. Plant growth-promoting rhizobacteria (PGPR) is responsible for production of 
various phytohormones such as indole acetic acid (IAA), gibberellic acid, and cytokinines 
(Sharma et al., 2014) [74] and essential metabolites such as siderophores, HCN, and antibiotics. 
PGPR has also been reported as being affective in enhancing availability of P in soil. The 
source of P (organic or mineral), host plant, microbial mixture, pH, anions, and cations, etc., 
determines P solubility in soil (Niu et al., 2010; Salimpour et al., 2010) [56, 68].  

www.thepharmajournal.com
https://doi.org/10.22271/tpi.2021.v10.i1e.5542


 

~ 361 ~ 

The Pharma Innovation Journal http://www.thepharmajournal.com 

Ectorhizospheric strains of Pseudomonas, Bacillus, 

Rhizobium, Enterobacter, and endosymbiotic rhizobia 

constitute effective phosphate solubilizer for enriching P soils 

(Khan et al., 2009) [36]. Adequate supply of P allows crops 

such as cereals and legumes to form seeds and mature early 

(Sharma et al., 2013) [75]. In mobilization of insoluble K in 

soil for plants, some effective microorganisms such as 

Bacillus mucilaginosus, Acidithiobacillus ferrooxidans, 

Arthrobacter sp., Azotobacter sp., Bacillus edaphicus, 

Frateuria sp., Klebsiella sp., Paenibacillus sp., Pseudomonas 

sp., and Rhizobium sp. (Liu et al., 2012) [43] play a very 

important role. Beneficial microorganisms can suppress 

phytopathogens growth in a variety of ways, such as 

competing for nutrients and space, limiting pathogens' supply 

of available nutrients (Köhl et al., 2019; Rana et al., 2016) [39, 

64].  

 

Plant Growth Regulators  

Soil microorganisms have the ability to synthesize different 

metabolites which may affect the properties of soil. Plant 

growth and chemical composition and their wellbeing are 

considered as one of the most significant soil fertility factors 

(Odelade and Babalola 2019) [57]. Different regulators for 

plant growth are produced from soil microorganisms, such as 

bacteria, fungi and algae (Goudaa et al., 2018) [28]. Plant 

growth-promoting rhizobacteria (PGPR) is responsible for the 

production of various phytohormones such as indole acetic 

acid (IAA), gibberellic acid, and cytokinines (Sharma R et al. 

2014) [74] and essential metabolites such as siderophores, 

HCN, and antibiotics. In the rhizosphere, several pathogenic, 

symbiotic, and free-living species of rhizobacteria acted along 

with PGPRs (Rachel et al., 2018). Fungi also play important 

role by bio-controlling parasitic spores, sclerotia, or hyphae of 

pathogenic fungi (Mejia et al. 2008) [49]. This biocontrol 

process involves enzymes including chitinases, proteases, and 

glucanases. This beneficial plant growth association of fungi 

is termed mycoparasitism (Köhl et al., 2019) [39]. 

 

Phosphorus Solubilization  

Unsolubilized phosphate is not taken up by plants but some 

rhizobacteria solubilize phosphate which is readily taken up 

by plants. Microorganisms solubilizing phosphorus (MSPs) 

play an important role in solubilization and mineralization 

(Sharma et al. 2013) [75]. The phosphate solubilization process 

involves a decrease in soil pH due to organic acid production 

by the microbial communities accompanied by the acid 

phosphatase discharge of organic phosphorus. Phosphorus 

solubilizing efficiency is achieved when co-inoculated with 

other beneficial bacteria or mycorrhizal fungi (Mohammadi 

2012) [51]. Bacterial efficacy in phosphorous solubilization is 

higher than fungi. 

PGPR has also been reported as being affective in enhancing 

the availability of P in soil. These bacteria, for example, can 

generate enzymes (phosphatases) (less than plants) and 

products such as organic products such as organic acids 

(carboxylic acids), protons, etc. that can increase the 

availability of P in the soil by influencing mineral P sources 

such as rock phosphate (Sharma R et al., 2014) [74]. The 

source of P (organic or mineral), host plant, microbial 

mixture, pH, anions, and cations, etc., determines the P 

solubility in soil (Niu et al. 2010) [56]. Ectorhizospheric strains 

of Pseudomonas, Bacillus, Rhizobium, Enterobacter, and 

endosymbiotic rhizobia constitute effective phosphate 

solubilizer for enriching P soils (Khan et al. 2009) [36].  

Phosphate-solubilizing bacteria (PSB) remain 1-50 percent of 

the population in normal soil, while phosphate-solubilizing 

fungi (PSF) have a population of only 0.1-0.5 percent 

(Panhwar et al. 2011) [59]. Many studies have shown that the 

use of PSM has increased production, yield and quality of 

crops, including apple, walnut rice, mustard, palm oil, maize 

and chili, wheat, sugar beet, sugar cane, chickpea, soybean, 

peanut and legumes, and potatoes. When applied to crop 

plants, PSMs have shown to enhance P uptake, growth and 

yield (Vikram et al., 2008) [94]. Adequate supply of P allows 

crops such as cereals and legumes to form seeds and mature 

early [Sharma et al., 2013] [75]. It induces early maturing and 

promotes the growth of deeper and more abundant roots by 

young plants [Mehrvarz et al., 2008] [48]. 

 

Potash Mobilization  

The third basic nutrient that plants need is potassium. 

Microorganisms play an important role in making insoluble 

forms of potassium available through mineralisation. K is 

Earth's seventh most abundant element 'Total K content in 

soils ranges between 0.04 and 3% K. While K is present in the 

soil as an abundant element, only 1-2% of this element is 

available to plants (Sattar et al., 2018) [71]. The remainder are 

related to other minerals and are therefore not accessible to 

plants. Large quantities of Potassium in the soil are present as 

a fixed source (not available indirectly to the plant) due to the 

imbalanced use of fertilizers, the large increase in crop yield, 

depleting soil Potassium and the depletion of Potassium in the 

soil system. As a result, Potassium deficiency has been 

identified in most crop plants (Xiao et al., 2017). Another 

study showed that potassium was solubilized by Bacillus, 

Clostridium and Thiobacillus (Groudev, 1987) [29]. In 

mobilization of insoluble K in the soil for plants, some 

effective microorganisms such as Bacillus mucilaginosus, 

Acidithiobacillus ferrooxidans, Arthrobacter sp., Azotobacter 

sp., Bacillus edaphicus, Frateuria sp., Klebsiella sp., 

Paenibacillus sp., Pseudomonas sp., and Rhizobium sp. ( Liu 

et al. 2012) [43] play a very important role. Inoculation of 

various plants with potassium solubilising bacteria generally 

showed significant increase in seedling vigor, germination 

rate, plant growth, yield (Anjanadevi et al., 2016) [7].  

 

Biofertilizer and Biopesticide  

Biofertilizer helps in improving soil fertility by fixing 

atmospheric nitrogen, both in conjunction with and without 

plant roots, solubilizing insoluble soil phosphates and 

producing plant growth regulator in the soil. The application 

of bio-fertilizers play important role in raising soil fertility, 

production attributing characters and there by final production 

has been documented by many workers. In addition, their 

application reduces the use of chemical fertilizers and 

improves soil biota. Microbial biofertilizer is the application 

of living microorganisms to seed, plant surface or soil to 

encourage microbial growth and nutrient supply for plants in 

the rhizosphere (Bhattacharyya and Jha 2012) [12]. Microbial 

biopesticides helps in plant growth by production of 

antibiotics, siderophores, HCN, production of hydrolytic 

enzymes, and acquired and induced systemic resistance 

against pathogen (Rana et al. 2016, Chandler et al. 2008) [64, 

15]. An important bacterial species called Rhizobium exhibits 

symbiotic relationships with leguminous plants (Shridhar 

2012; Wang and Martinez-Romero 2000) [76, 96]. Biofertilizer 

application is the only alternative for improving soil organic 

carbon to maintain soil quality and potential productivity in 
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agriculture. Organic farming, a system of production which 

tends to avoid the use of chemicals and is heavily dependent 

on biopesticides and biofertilizers. Best for sustainable 

agriculture are microbial biofertilizers and biopesticides 

(Bhardwaj et al. 2014) [11]. Other bacterial species, e.g., 

Bacillus, Mesorhizobium, Acetobacter, Azospirillum, 

Aspergillus, Rhizobium, Bradyrhizobium, Azorhizobium, 

Azotobacter, Allorhizobium, Penicillium, Pseudomonas, etc., 

also have potential plant growth-promoting capacity (Vessey 

2003) [93]. 

 

Microbial Antagonism 

Beneficial microorganisms can suppress phytopathogens 

growth in a variety of ways, such as competing for nutrients 

and space, limiting pathogens' supply of available nutrients 

(Köhl et al., 2019) [39]. Disease-suppressive soil microflora is 

generally dominated by antagonistic microorganisms capable 

of producing a variety of antibiotics (Gómez Expósito, R, 

2017) [27]. Aspergillus, Penicillium, Trichoderma, and 

antagonistic actinomycetes are known as a potent center for 

developing varying mode of action for various antibiotics 

(Zivkovic et al., 2010) [100]. Most Trichoderma strains are 

highly opportunistic attackers (Kubicek, 2019) [40]. In soil-

borne plant pathogens, antibiotics produced by antagonistic 

microbials have biostatic and biocidal effects. 

 

 

Rhizosphere Microbes Improves Plant Stress Tolerance  

Salinity Tolerance  

Salinity is considered enemy of intensive farming (Machado 

et al., 2017) [44]. Salinity can have significant impact on 

agriculture, biodiversity and environment (Shrivastava et al., 

2015). High salt concentrations in soil decreases seed 

germination and plant growth (Orlovsky et al., 2016) [58]. 

A.chroococcum inoculation significantly reduces impact of 

salt stress on plant growth parameters such as root length, 

plant height, fresh shooting, root weight, dry shooting and 

root weight (Prajapati et al., 2008) [61]. Azospirillum 

inoculation can affect variety of salt-stressed maize (Khan et 

al., 2019) [38]. Secondary inoculation with Azospirillum may 

result in prolonged root exudation of plant flavonoids for salt-

stressed plants following inoculation with Rhizobium 

(Dardanelli et al., 2008) [19]. Therefore, co-inoculation of 

plants with different bacterial species will increase resistance 

against abiotic stress. Two PGPR B. megaterium and 

Enterobacter sp. induce salt tolerance, and consequently 

improve growth of salt stressed okra plants (Gouda et al., 

2018) [28]. However, most other species of Azospirillum can 

only tolerate 2 percent of NaCl (Fukami et al., 2018) [25]. 

(Ramadoss et al., 2013) [63] reported halotolerant bacteria 

Hallobacillus sp. SL3 and Bacillus halodenitrificans PU62 

have potential to enhance growth of plants under saline stress. 

In addition, soil bacteria also gave transgenic pea a positive 

relationship and increased tolerance for salt stress (Ali et al., 

2015) [6]. (Vega et al., 2020) [92] stated that inoculation of 

crops with natural halotolerant PGPR strains like S. equorum 

strain EN21, with its high quorum quenching ability, could be 

an effective biocontrol strategy for both saline and non-saline 

soils. Another strain P. geniculate MF-84 decreases Na+ 

uptake and increases K+ and Ca2 + uptake in maize roots 

suggesting MF-84's function in maintaining ionic balance / 

homeostasis in plant roots under higher salt conditions. This 

strain not only helps to mitigate salt toxic effects but also 

increases plant growth and decreases crop losses due to 

salinity (Singh et al., 2020) [80]. (Saad et al., 2019) [67] reported 

that P. polymyxa, B. nakamurai and B. pacificus were 

effective in colonizing the wheat plant rhizosphere and in 

protecting wheat plants from destruction to salt stress. Such 

PGPRs also ameliorated the reduction of proline 

accumulation in shoots, increased RWC, electrolyte leakage 

and enzymatic activity, improved antioxidant enzymes, 

growth and wheat yield under saline stress. 

Direct mechanisms including phytohormone formation (e.g., 

auxins, cytokinine, ethylene, and gibberellins), nitrogen 

fixation, nutrient mobilization, and synthesis of siderophores 

(Egamberdieva et al., 2017) [22] lead to an increase in root 

volume, surface area and root number through nutrient uptake 

there. Main indirect mechanism involves reducing incidence 

of diseases causing plant pathogens. ACC deaminase is 

produced by root colonizing rhizobacteria which converts 

ACC into ammonia and alpha ketobutyrate and lower 

ethylene. Physical and chemical changes caused by PGPR 

contribute to mediated systemic tolerance (IST), improved 

salinity stress tolerance. They promote growth of root and 

shoot and reduce susceptibility of fungi like Fusarium solani 

to cotton plant disease. 

 

 
 

Fig 1: Plant Microbe interaction under abiotic stress Drought Stress Tolerance 
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Paenibacillus sp., Bacillus sp. and some other gram-positive 

bacterial isolates were found to be successful in increasing the 

drought resistance of plants (Timmusk et al., 2014) [86]. 

Drought stress on plants can lead to stomatal closure to 

mitigate water loss by increasing levels of abscisic acid 

(ABA) in leaves along with other compounds such as 

ethylene, salicylic acid, etc. PGPR has beneficial effects on 

plant drought tolerance due to changes in hormonal content 

ABA, ethylene and cytokinine (Cohen et al., 2008) [18]. 

Drought stress limits crop growth, yield and changes plant 

chemistry, particularly in arid and semi-arid regions (Emerson 

et al., 2014; van der Weijde et al., 2016) [23, 62, 90]. It also 

affects soil microbiota directly or indirectly by producing 

osmotic stress, contributing to microbial cell death. However, 

dry plants seem to favor higher bacterial and fungal levels, 

and increased soil fungal / bacterial proportions (Naylor et al., 

2018) [54]. Thus, plant inoculation with beneficial native 

microorganisms may increase drought tolerance of plants 

growing in arid or semi-arid areas. Stimulting with 

rhizosphere bacteria is a novel and successful way to increase 

the efficiency of water usage by plants in extreme conditions 

(Timmusk et al., 2014) [86]. 

Under low water potential, microbes have evolved to survive 

by forming thick walls or entering a dormant phase, 

accumulating osmolytes, producing exopolysaccharides. Such 

microbes provide nutrient and better environmental conditions 

for continuous growth of plants, regardless of water content. 

PGPR also has the ability to synthesize plant hormones, 

which promote plant growth and division under stress. IAA, 

the most active auxin controlling differentiation of vascular 

tissue, adventitious and lateral root differentiation, cell 

division, and shoot growth during drought stress (Guan et al., 

2019) [30]. ABA is an effective growth regulator in the event of 

drought stress. Concentration of ABA increases when seed or 

plant is inoculated with PGPR, and controls plant physiology 

to withstand drought stress. ABA relieves stress from drought 

by controlling transcription of drought-related gene and root 

hydraulic conductivity (Jiang et al., 2013) [33]. Drought stress 

tolerant and PGPR increase biomass, water potential, 

decreasing water loss under stress conditions in maize plants. 

These inoculants reduce antioxidant activity and also boost 

proline, free amino acid, and plant sugar production 

(Vardharajula et al., 2011) [91]. (Silva et al., 2020) [78] studied 

that inoculation of strain G diazotrophicus Pal5 favored red 

rice plants by promoting different root growth and 

developmental mechanisms against drought stress, enabling 

root development and improving biochemical composition.  

 
Table 1: Microbe-mediated abiotic stress tolerance in plants. 

 

Abiotic stress Microorganism Plant Reference 

Salanity 

Glomus fasciculatum Phragmites australis (Figueiredo et al., 2008) [24] 

Glomus intraradices Glycine max (Al-Garni, 2006) [3] 

Azospirillum brasilense and Pantoea dispersa 

(Co-inoculation) 
Capsicum annuum 

(del Amor and Cuadra-Crespo, 

2012) [21] 

Glomus intraradices BAFC 3108 Lotus glaber (Sannazzaro et al., 2006) [70] 

Glomus clarum Vigna radiata (Kaya et al., 2009) [35] 

Glomus etunicatum 
Capsicum annuum 

Triticum aestivum 
(Zhang et al., 2008) [101] 

Bacillus subtilis Arabidopsis (Aroca et al., 2008) [9] 

Glomus intraradices BEG121 

Pseudomonas putida Rs-198 

Lactuca sativa 

Gossypium hirsutum 
(Yao et al., 2010) [99] 

Azospirillum brasilense strain Cd Phaseolus vulgaris (Dardanelli et al., 2008) [19] 

Bacillus subtilis Lactuca sativa (Arkhipova et al., 2007) [8] 

Bacillus subtilis GB03 Arabidopsis thaliana (Zhang et al., 2008) [101] 

Pseudomonas simiae Glycine max (Vaishnav et al., 2016) [89] 

Pseudomonas syringae DC3000, Bacillus sp. strain L81, 

Arthrobacter oxidans Root-associated plant growth-promoting 

rhizobacteria (PGPR) 

Arabidopsis thaliana 

Oryza sativa 
(Jha et al., 2014) [32] 

Cyanobacteria and cyanobacterial extracts 

Oryza sativa, Triticum 

aestivum, Zea mays, 

Gossypium hirsutum 
(Singh, 2014) [79] 

 Pseudomonas koreensis strain AK-1 Glycine max L. Merril (Kasotia et al., 2015) [34] 

Drought 

Burkholderia phytofirmansEnterobacter sp. FD17 Zea mays (Naveed et al., 2014) [53] 

Bacillus thuringiensis AZP2 Triticum aestivum (Timmusk et al., 2014) [86] 

Pseudomonas chlororaphis O6 Arabidopsis thaliana (Cho et al., 2008) [16] 

Pseudomonas putida strain GAP-P45 Helianthus annuus (Sandhya et al., 2009) [69] 

Bacillus licheformis strain K11 Capsicum annum (Lim and Kim, 2013) [42] 

Rhizobium tropici and Paenibacillus polymyxa 

(Co-inoculation) 
Phaseolus vulgaris (Figueiredo et al., 2008) [24] 

Heat 

Bacillus amyloliquefaciens, Azospirillum brasilence Triticum aestivum (Abd El-Daim et al., 2014) 

Curvularia proturberata isolate Cp4666D 
Dichanthelium lanuginosum, 

Solanum lycopersicum 
(De Zelicourt et al., 2013) [20] 

Cold 

Burkholderia phytofirmans PsJN A. thaliana (Su et al., 2015) [82] 

Pseudomonas vancouverensis 

OB155-gfp Pseudomonas frederiksbergensis OS261-gfp 
Solanum Lycopersicum (Subramanian et al., 2015) [83] 
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Cold Tolerance 

Organisms adapted to cold constitute a large part of the earth's 

biomass. In biogeochemical cycles, they play important roles. 

These bacteria synthesize cold shock proteins (CSPs) and cold 

acclimatizing proteins (Caps) when faced with low 

temperatures. Cold shock proteins (CSP) are 7-10 kD in size 

and are adequate for the functioning of RNA chaperones 

because they contain nucleic acid binding activity. The CSP 

chaperone function is considered essential for promoting 

growth during stress acclimation as well as during times of 

high metabolism.  

The tolerance of transgenic rice, maize and arabidopsis for 

various abiotic stresses such as cold, heat and water 

deficiency has been shown to increase yields in field 

conditions due to the expression of bacterial CSPs 

(Castiglioni et al., 2008) [13]. They can also produce 

housekeeping proteins under cold conditions. Some earlier 

findings suggest effective introduction of cold-tolerant 

rhizobacteria (Rani et al., 2013; Suyal et al., 2014) [65, 85]. 

(Selvakumar et al., 2013) [72] revealed rock phosphate 

solubilization using Himalayan-isolated psychrotolerant 

Pseudomonas sp. from India. (Majeed et al., 2015) [46] 

examined the overall impact of crop yield boosting 

rhizobacteria extracted from Kashmir 's wheat rhizosphere in 

Himalayan area. Furthermore, seven diazotrophs were 

isolated from rhizospheric soil, and their proteom was 

recently published (Tomer et al., 2017) [87].  

The temperature resistant microbes were shown to exhibit 

low-temperature plant growth properties. (Yadav et al., 2019) 

[98] reported that, Brevundimonas terrae, Pseudomonas 

cedrina, Arthrobacter nicotianae adapted for low temperature 

shows ability to promote multifunctional growth of plants. 

PGPR isolated from root nodule of pea plant growing at low 

temperature has an effective low temperature biofertilizer 

ability (Meena et al., 2015) [47]. These studies verified that the 

protein family can offer broad stress resistance, which also 

correlates into increased grain yields under both controlled 

stress and natural environment. 

 

Heat Tolerance  

The rising climate crisis already has a serious influence on 

global agricultural development, as heat waves trigger 

reduction in yield which is a major risk for ensuring food 

security (Ray et al., 2019) [66]. Rising temperatures impact 

photosynthesis, plant water interactions, flora and fruit in 

warm and subtropical plants. For nitrogen fixation, elevated 

temperatures in the soil is a major restriction to leguminous 

plants.  

Genetic advances can impart a resistance for heat stress on 

crops, but bacteria and fungi can be a more environmentally 

sustainable solution in overcoming this challenge. PGPR also 

improves plant resistance to temperature stress in recent 

studies. Crop treatment with PGPR strains that colonize roots 

greatly improves tolerance for heat stress (Abd El-Daim et al., 

2014) [1]. (Srivastava et al., 2008) [81] extracted Psseudomonas 

putida NBRI0987 from drought impacted chickpea 

rhizosphere.  

This microorganism observed over development of stress 

sigma (S) (RpoS) when grown under high temperature stress 

at 40°C versus 30°C. A thermotolerant Pseudomonas sp. 

strain AMK-P6 induced thermotolerance in sorghum 

seedlings due to synthesis of high molecular weight protein in 

leaves and improved plant biomass as well as biochemical 

status in terms of proline, sugar, amino acid and chlorophyll 

content (Ali et al., 2009) [4]. (Nehra et al., 2007) [55] reported 

Rhizobium sp mutants which are heat-resistant / heat-tolerant. 

(Cajanus) can tolerate thermal stress and be more efficient in 

fixing atmospheric N2 than parent strain under natural high 

temperature conditions. In addition, Pseudomonas putida 

strain AKMP7 thermotolerant inoculation decreases heat 

stress and thus increases the development of the wheat plant 

in the face of heat stress (Ali et al., 2011) [5]. The bacterial 

heat-shock reaction isn't restricted just to variations in the 

temperature and is a universal stress response because other 

environmental adjustments including heavy metal additions, 

contaminants, ethanol, deprivation, high osmolarity or the 

relation with eukaryotic hosts activate several thermal-shock 

proteins. (Mahmood et al., 2014) [45].  

 

Conclusion  

Climate change already shows its damaging effect on Earth. 

The prospect of climate change is going to be more dangerous 

and we need to act immediately. As a result there is an 

emerging interest in different climate change adaptation 

approaches, microbial mitigation and adaptation. The role of 

microbes among scientific community is not that well known. 

But recently, diverse promising aspects of microbes have 

been discovered to cope with changing environments due to 

climate change. Some of them were discussed in this review. 

Further progression this direction will come from microbial 

community, diagnosis and physiology study, and DNA 

sequencing research. Most definitely, the Earth's sustainability 

will depend greatly on how effectively the microbial life can 

be utilized under rising environmental stress conditions. To 

contribute to the development of PGPR mediated strategies 

for abiotic stress, in depth knowledge of the PGPR associated 

mechanism is extremely essential. Some changes in root 

architecture induced by PGPR are important in increasing the 

tolerance to stress in plants and therefore requires thorough 

study. In addition, the clarification of the underlying 

mechanism in PGPR’s abiotic stress alleviation needs to be 

further elucidated, and much more needs to be revealed about 

PGPR mediated stress tolerance in plants. 
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