Antibiotic adjuvants as a novel strategy to tackle antibiotic resistance

Janus A, Deepa PM, Biju P Habeeb and Jess Vergis

Abstract

Today antimicrobial resistance is considered as one of the most important threats to global health. So it is very crucial to identify measures to overcome the different mechanisms of antibiotic resistance. Among the major approaches to tackle Antibiotic resistance, antibiotic adjuvant strategies play an important role. The antibiotic adjuvant combinations that attained clinical success include β-lactamase inhibitors, efflux pump inhibitors, outer membrane permeabilisers, virulence inhibitors and nanoparticles. Preclinical and clinical trials on these different approaches are going on.

Keywords: Antimicrobial resistance, antibiotic adjuvant strategies, β-lactamase inhibitors, efflux pump inhibitors, outer membrane permeabilisers, virulence inhibitors and nanoparticles

1. Introduction

Discovery of antibiotics has been considered as one of the most relevant contributions of the 20th century. With the use of antimicrobials, a number of infectious diseases were controlled and even eradicated. But the overuse or misuse of these antibiotics in human beings, has led to the emergence of antibiotic resistance (1). The problem of antibiotic resistance is equally important in animals as antibiotics are used extensively in them as therapeutic, prophylactic or as a growth promoter (2). Widespread usage of antibiotics resulted in a selection pressure for bacteria to develop mutations or acquire resistance genes (3). Today antimicrobial resistance is considered as one of the most important threats to global health (4). Resistance can be divided into two groups, intrinsic resistance or acquired resistance. While intrinsic resistance is due to the absence of targets to the antibiotics, acquired resistance is due to casual mutations or through acquisition of external genetic material. Horizontal gene exchange occurs through plasmids or transposons. Bacteria develop resistance to antibiotics through different mechanisms 1. Altering drug uptake by changes in the outer membrane permeability 2. Expression of efflux pumps for pumping out antibiotics 3. Modification of the drug target 4. Enzymatic inactivation of antibiotics to make them inactive 5. Through virulence factors (5).

2. Current scenario

World Health Organization (WHO) recently published an extensive list of antimicrobial resistant bacteria and the resistance level is very high in the case of almost all the clinically relevant bacteria. These bacteria are resistant to almost all antibiotics in the current pipeline. So it is very crucial to identify measures to overcome the different mechanisms of antibiotic resistance. The global consumption of antimicrobials in livestock was estimated to be 63,151 units in 2010. India accounts for 3% of the global consumption and is the fourth highest in the world. At 12.9x10^9 units of antibiotics consumed in 2010, India was the largest consumer of antibiotics for human health (6). In January 2010, Food Safety and Standards Authority of India (FSSAI) limited the use of antibiotics in livestock rearing. An indicator of the rising tide of AMR in India is the rapidly increasing proportion of isolates of Staphylococcus aureus that are resistant to methicillin. In 2008, about 29% of isolates were of methicillin-resistant Staphylococcus aureus (MRSA), and by 2014, this had risen to 47% (7).

Presence of antimicrobial residues in food animal products were reported from different parts of India (8). Similar related bacterial strains of animal origin were reported in human population (9). Vancomycin resistant S. Aureus isolated from milk samples (10) Gram negative organisms were isolated from milk samples among cattle suffering from mastitis, of which 48% were ESBL producers (11).
Presence of large number of resistant bacteria and corresponding genes in animal food products were reported [12].

3. Surveillance and monitoring of antibiotic resistance
In May 2015 World Health Assembly adopted a global action plan on antimicrobial resistance (GAP-AMR), which outlines five objectives [13]:

- to improve awareness and understanding of antimicrobial resistance through effective communication, education and training;
- to strengthen the knowledge and evidence base through surveillance and research;
- to reduce the incidence of infection through effective sanitation, hygiene and infection prevention measures;
- to optimize the use of antimicrobial medicines in human and animal health;
- to develop the economic case for sustainable investment that takes account of the needs of all countries and to increase investment in new medicines, diagnostic tools, vaccines and other interventions.

3.1 Elements and execution
WHO has initiated many programmes with the above mentioned objectives to fight antimicrobial resistance

3.1.1 World Antimicrobial Awareness Week (WAAW): Held annually since 2015, WAAW is a global campaign that aims to increase awareness of antimicrobial resistance worldwide and to encourage best practices among the general public, health workers and policy makers to avoid the further emergence and spread of drug-resistant infections. WAAW takes place every year from 18 to 24 November. “Antimicrobials: Handle with Care” is the slogan in 2020.

3.1.2 Global Antimicrobial Resistance and Use Surveillance System-(GLASS): Coordinates collection, analysis and sharing of data related to antimicrobial resistance at a global level

3.1.3 Global Antibiotic Research and Development Partnership-GARDP: Encourages research and development through public-private partnerships.

3.1.4 Interagency Coordination Group on Antimicrobial Resistance (IACG): to improve coordination between international organizations and to ensure effective global action against this threat to health security. 

Along with the GAP-AMR, National Action Plan to contain AMR (NAP-AMR) has been initiated in India in May, 2017.

3.1.4 The National Programme on the Containment of Antimicrobial Resistance: launched under the aegis of the National Centre for Disease Control (NCDC) under the Twelfth Five-Year Plan (2012–2017). The objectives of this programme were to establish a laboratory based AMR surveillance system of 30 network laboratories, generate quality data on AMR for pathogens of public health importance, strengthen infection control guidelines and practices, and promote rational use of antibiotics; and generate awareness about the use of antibiotics in both health care providers and in the community

The Indian Council of Medical Research (ICMR) has established a national network on surveillance of AMR in laboratories based at academic centres, targeting medically important index microbes which have been identified by WHO.

3.1.5 The Antimicrobial Resistance Surveillance Research Network (AMRSN): established by the ICMR has six reference labs for six pathogenic groups that are located in four tertiary care medical institutions. ICMR has also developed a real time online AMR data entry system for its network and will have AMR data analysis capacity specific for bacterial species in relation to point of origin of pathogens as well as various patient demographic parameters. The AMRSN, although currently limited to human health, plans to scale up on a national scale and expand its ambit to include samples from a wider spectrum of sources, including animal, environmental and food samples, to reflect the One Health Approach.

3.1.6 Antimicrobial Stewardship, Prevention of Infection and Control (ASPIC) in 2012: ICMR launched the programme on Antimicrobial Stewardship, Prevention of Infection and Control (ASPIC) in 2012 through collaboration between the office of the National Chair of Clinical Pharmacology, ICMR and the Christian Medical College, Vellore

Along with NAP-AMR, Kerala became the first state to launch action plan on antimicrobial resistance - Kerala Antimicrobial Resistance Strategic Action Plan (KARSAP) in 2019 [14].

3.2 Antibiotic adjutants –definition
Among the major approaches to tackle Antibiotic resistance, antibiotic adjvant strategies play an important role. Combination therapy of antibiotics and adjuvants has been identified as the recent advancement in the fight against antibiotic resistance, which helps in suppressing antibiotic resistance and enhance antibiotic activity. Antibiotic adjuvants are compounds with weak/no antibacterial activity and they aid in suppressing resistance and enhance antibiotic activity.

3.3 Antibiotic adjuvants – review of the current system
The antibiotic adjuvant combinations that attained clinical success include β lactamase inhibitors, efflux pump inhibitors, outer membrane permabiilisers and virulence inhibitors [15].

3.3.1 β lactamase inhibitors
Beta lactamases are enzymes produced by many relevant bacteria which can inactivate β lactam antibiotics through hydrolysis. Inhibitors can be combined with a specific β lactam antibiotic to inhibit β lactamase enzymes.β lactam - β lactamase inhibitor combinations were identified that inactivate β lactam antibiotics. Clavulanic acid with amoxicillin, Sulbactam with ticarcillin and cefoperazone, Tazobactam with cefoperazone. Non β lactam- β lactamase inhibitor combinations include Avibactam with ceftazidime/ceftaroline, Nacubactam/relebactam with imipenem, boronic acids. Synthetic Non β lactam inhibitor VNRX 5133 with Cefepime showed antibacterial activity in carbapenem resistant enterobacteria. [16].

3.3.2 Efflux pump inhibitors
This type of resistance mechanisms involve the antibiotics that exert their antibacterial action inside the bacterial cell eg.
fluroquinolones, tetracyclines, macrolides. These are bacterial transport proteins involved in extrusion of substrates from the cellular interior to the external environment. The efflux pumps are classified based on sequence similarity, substrate specificity and energy source. Primary efflux pumps draw energy from ATP hydrolysis eg. ATP binding cassettes. Secondary efflux pumps draw energy from chemical gradient eg. Small multidrug resistance family (MRS), Multidrug and toxin extrusion family (MATE), Major facilitator superfamily (MFS), Resistance nodulation cell division (RND). A single efflux pump can extrude a wide range of antibiotics and so their inhibition can improve bacterial susceptibility to a number of antibiotics [17].

There exists different possibilities for the action of the efflux pumps [18]. It can be through the Inhibition of the energy sources required for the activity of the efflux pumps; the membrane potential and the generation of ATP. Another mechanism is by developing compounds able to compete with the antibiotics for their extrusion eg. a. Phenyl alanine – arginine-β naphthylamide (PABN) inhibit RND efflux pumps, but many reports of toxicity of the compounds exist [19]. Other molecules in this group include Pyridopyrimidines and arylpiperazines and their therapeutic efficacy studies have been reported [20]. Another method of efflux pump inhibition is by modification of the antibiotics to reduce its affinity for the efflux pumps eg. New compounds of the glycolcycline and ketolide classes differ from their progenitors in showing efflux pump inhibitory action of piperine from thyme leaves [21]. Efflux pump inhibitors with no definite mode of action are classified based on their source. Plant derived EPIs include a wide variety of molecules that synergistically enhance antibiotic efficacy. Major subclasses are as follows.

a. Plant alkaloids – Reserpine from Rauwolfia serpentina was a promising EPI that potentiated the activity of tetracycline in B. subtilis [22] and norfloxacin in S. aureus [23]. The efflux pump inhibitory action of piperine from Piper nigrum and its derivatives has been reported against S. aureus and Mycobacteria spp [24, 25].

b. Flavonoids– Baicalein a weak antimicrobial flavone isolated from thyme leaves (Thymus vulgaris) improved the susceptibility of clinical MRSA strains towards ciprofloxacin and β lactam antibiotics [26].

c. Polyphenols– Catechin gallic and epigallocatechin gallic (green tea leaves) are weak inhibitors of NorA efflux pump [27].

d. Phenolic diterpenes such as carnosol from the herb rosemary (Rosmarinus officinalis) has shown efflux pump inhibition activity for tetracycline and erythromycin against macrolide resistant strain of S. aureus [28].

b. Synthetic origin: Synthetic small molecule EPIs are further classified as follows.

1. Peptidomimetic compounds: The dipeptide amide compound PA5N was one of the first EPIs discovered. PA5N has been reported to potentiate the activity of antibiotics fluoroquinolones, macrolides and chloramphenicol [29].

2. Quinoline derivatives - Quinoline derivatives such as pyridoquinolones can restore the activity of norfloxacin in E. Aerogenes [30].

3. Aryl piperidines /piperazines – Phenyl piperidines inhibited the action of S. aureus MDR efflux pumps [31].

A small number of EPIs were produced from microbes eg. LA 371α and LA 371δ produced from fermentation extract of Streptomyces spp [32].

3.3.3 Outer membrane permiabilizers

As the outer membranes in Gram - bacteriae mainly composed of polyanionic lipopolysacharides and porins, which limits antibiotics in to the cell, some antibacterials have reduced efficacy in treatment. Permiabilisers interact with -vely charged outer membrane and disrupts the barrier. Permiabilizers are cationic molecules which Interact with polyanionic lipopolysacharides and destabilises the cell wall eg. polymyxin, Colistin, aminoglycosides [33]. Chemosensitizers which disrupt membrane protein activities have also been proved as outermembrane permiabilisers eg. Detergents, surfactants. It has been reported that a glycinene basic peptide (GBP), a cationic polypeptide. works by disrupting the membrane barrier and the E. coli ion-channel and improved the sensitivity of E. coli to erythromycin and rifampicin. [34]. Another study revealed the effect of mandneyne on the membrane permeability of MDR strains of S. aureus, P. aeruginosa, and E. coli. [35]. Endogenous antimicrobial peptides (AMPs), which are factors secreted by host cells and organs (e.g., neutrophils, exocrine glands, etc.). destabilize the outer cell membrane of prokaryotes by the formation of an amphilphile sheet or short β sheet structures [36]. But their therapeutic use remains uncertain due to the high cost of their production and also, the proteases secreted by bacteria have been shown to neutralize AMP’s activity. Caragenins, a new class of adjuvants, which are cationic steroidal antibiotics, are resistant to the action of proteases. Positively charged caragenins, gets attracted to the negatively charged membranes leading to cell death through disruption of the membrane It was demonstrated that by combining CSA-13 with antibiotics, synergy was achieved with colistin (55%) and tobramycin (35%) [37].

3.3.4 Anti virulence factors

Virulence factors are expressed in bacteria only during infections. They are non essential for the basal growth of the bacteria but they are essential for disease causation by the bacteria and hence targeting these antivirulence factors can effectively inhibit the ability of the bacteria to cause infection [38, 39].

a. Targeting biofilms

Biofilms are the predominant life-mode of most bacterial species which are densely packed microcolonies concealed in a protective matrix of biopolymers [40, 41]. Bacterial species employ so-called c-di-GMP signalling to produce an extracellular matrix and form biofilm, or assume a planktonic lifestyle [42, 43]. A reduction in the c-di-GMP level down regulates the production of biofilm matrix components and causes dispersal of biofilm [44]. Biofilm inhibitors include a. compounds that modulate the function of pili and curli in Escherichia coli. Compounds that are modulators of c-di-GMP Signalling and c. compounds that target Quorum sensing. Bacterial attachment is the first step in biofilm formation and failure to attach to surfaces results in eradication of the infection. Bacterial pili and fimbriae systems are involved in surface attachment and facilitates colonization of the underlying tissue [45]. Pili are often assembled via a chaperone usher pathway [46]. Construction of
pili occurs by the attachment of the functional subunits from top to bottom [47]. Pili are compounds that interfere with pili formation eg. Mannocides which compete for mannose (MR). New Delhi: Nati.

S, Ha.

- mza

tilise synthetic

nal of Australia 1997;167:124

ered that

least one

. The non oxidative mechanism is by direct

, Antibiotic articles have higher loading capacity and

- permeability, and cause irreversible membrane

and DNA replication. Reactive oxygen species also alters cell

membrane permeability, and cause irreversible membrane

damage. [59, 60]. The non oxidative mechanism is by direct

interaction of nanoparticles with cell walls through different types of physicochemical interactions. Once the particle gets attached to cell surface, redox reactions takes place to create oxidative stress in bacteria [61]. The Nanoparticles also work as carrier of antibiotics and also in preventing biofilm formation.

4. Conclusion

All renowned antibiotic classes have earned notable resistance. Monotherapy approaches are found to be less effective. Now the focus is on the resistance mechanisms of bacteria. Combinational approach can bypass bacterial resistance mechanisms. Nanotechnology has emerged as an interdisciplinary approach. Preclinical and clinical trials on these different approaches are going on.

5. References


8. Kakkar M, Rogawski L. Antibiotic Use and Residues in Chicken Meat and Milk Samples from Karnataka and Punjab, India. New Delhi, India: Public Health Foundation of India 2013.


13. World Health Organization.. Global action plan on antimicrobial resistance. Antimicrobial resistance and its


45. Cusumano CK, Pinkner JS, Han Z, Greene SE, Ford BA, Crowley JR, et al. Treatment and prevention of urinary...


