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Abstract 
According to the state of food security and nutrition, Hunger has increased in many countries in which 

the economy has slowed down, mostly in middle-income countries. If nothing changes, the immense 

challenge of achieving the Zero Hunger Target by 2030. The causes of food scarcity might include 

factors such as unavailability of food due to less production of particular crops/vegetables (due to attack 

of pests/microbes), it becomes harder to fulfill the basic needs of life especially for poor. Therefore, we 

need to primarily focus on understanding the interaction between plants and microbes at the molecular 

level and underlying mechanisms of plant disease and which will help out to solve the global needs of 

food and resources. Plants have a natural defense mechanism/immune system to react to infections which 

subdivides into two parts. The first part identifies and reacts to molecules common to different classes of 

microbes, including non-pathogen. The function of the second part is to react to pathogens virulence 

factors, either directly or by affecting the host targets. We can also see the intricacies or reciprocation 

between plants and pathogen attackers. A vast and deep comprehension of plant defense mechanisms will 

defiantly solve the issue, like food scarcity. 

 

Keywords: Microbial-or pathogen-associated molecular patterns (MAMPS or PAMPs), pattern 

recognition receptors (PRRs), PAMP-triggered immunity (PTI), hypersensitive response (HR), effector-

triggered immunity (ETI) 

 

Introduction 

The defense mechanism plant, a system that allows plants to resist attack from a large variety 

of its enemy. Here, we provide a strategic plan that plants adapt during its immunity. Plant 

diseases caused by pathogens and microbes are a continuous threat to crop losses and global 

food security which have devastating effects on both smallholder and factory farming [1-3], the 

subsequent impact can also be seen in the food supply. The estimated impact of pre-harvest 

yield loss in crops caused by disease vary, but at least 30% of global agricultural production is 

affected annually [5]. If we do not take proper action it can badly impact on agriculture, 

economy, and society of any nation. Perhaps the best-known example would be the Irish 

potato famine in the mid-1800s, where potato late blight disease (caused by the filamentous 

plant pathogen Phytophthora infestans) contributed to mass emigration from Ireland [4]. In 

current agriculture practice, plant diseases are largely controlled by chemicals, but this is 

unsustainable in the long-term due to environmental concerns and also for future needs of 

resources. Our focus will be on the cell surface and intracellular immune receptors. We also 

try to explain how these receptors recognize the signatures of pathogens and pests then activate 

immune pathways. The interaction between a pathogen and its host is like an evolutionary 

process, which has been taking place from a long history of warfare with its enemy and they 

are being constantly changing themselves to fight against natural selection and win over on 

one another. Though Plants suffer from a disease, their ability to react to infection is crucial for 

survival. The disease develops only when the pathogen is successful in escaping the multiple 

layers of host defenses [6-8]. The immune system of plants has similarities with the innate 

immune system of animals [9-11]. But as plants lack an adaptive immune system, they depend 

completely and only on innate immunity to perceive microbial pathogens and pests. This 

review will provide that conceptually, plant immunity can be bifurcated into the cell-surface 

receptor immunity and intracellular immunity [12]. 

We also focus on current knowledge of intracellular perception of cell surface receptor and 

intracellular pathogens, activation of NLRs, and the downstream signaling components. 
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Cell-surface receptor immunity  

It is provided by pattern recognition receptors/ receptor-like 

kinases/ Cell surface receptor/ receptor-like proteins (PRRs)/ 

(RLKs) / CRT)/ RLPs) which recognize microbe/pathogen/  

damage-associated molecular patterns (MAMPs /PAMPs / 

DAMPs respectively) such as bacterial flagellin or fungal 

chitin and trigger to [13-16]. Highly adapted pathogens 

sometime breach pattern‐ triggered immunity (PTI) by 

injecting pathogen‐ encoded proteins called effectors into 

plant cells [17]. 

 

 
 

Fig 1: The above model can be predicted in the three ways: FIRST recognition, SECOND signal transduction, and THIRD defense response. 
 

Firstly, damage-associated molecular patterns DAMPs) and 

MAMPs/PAMPs recognized by plant either by symplastically 

detected via cytoplasmic NBS-LRRs or by apoplastically 

detected via RLKs. Secondly, the MAP Kinase pathway 

which allows the signal transduction of DAMPs/ 

MAMPs/PAMPs and activates a series of transcription factors 

like the WRKY gene. Thirdly, this signal causes the 

production of specific defense responses which include 

callose deposition, reactive oxygen species (ROS) production, 

and various specialized metabolism (here camalexin) [18]. 

  

Types of cell-surface receptors 

These are transmembrane receptors and the best-studied class 

of plant PRRs is receptor-like kinases (RLKs), which feature 

an ectodomain of leucine-rich repeats (LRRs) involved in 

MAMP perception, and an intracellular kinase domain, 

involved in signal transduction relay via MAPK cascades, 

resulting in MAMP-triggered immunity (MTI) [19]. 

RLKs contain a variable extracellular domain that mediates 

ligand recognition. Plant RLKs that have been identified 

mostly belong to the family of non-RD kinases in which 

conserved arginine in the catalytic loop is absent and they 

often associate in dynamic complexes with membrane-bound 

RLKs that are functional RD kinases (such as BAK1 and 

SERKs), which operate as coreceptors for perception to 

initiate immune signaling [20-23]. In reference to RLPs, they 

exhibit a similar overall structure to RLKs, and only contain a 

lacking kinase domain, a short intracellular tail, and require a 

partner co-receptor to signal [24-25]. 

The LysM-type RLKs LYK5 (Lysin motif receptor kinase 5) 

and CERK1 (Chitin elicitor receptor kinase 1) [26-27] bind 

fungal chitin oligomers and, Arabidopsis LRR-type RLKs, 

FLS2 (Flagellin-sensitive 2), and EFR (elongation factor Tu 

(EF-Tu) receptor) [28-29], are amongst the best characterized 

cell-surface immune receptors. 

EFR recognize peptide epitopes from the N-termini of 

bacterial flagellin (flg22) and bacterial EF-Tu (elf18) 

respectively [30]. 

  

Recognition of peptide 
Many subfamilies of cell-surface receptors is protein ligands 

LRR-RLKs which preferentially bind peptides or proteins as 

ligands [31-33]. LRR-RLKs from rice and solanaceous plants 

have also been characterized in Arabidopsis FLS2 and EFR. 

The rice cell-surface receptor Xa21 binds RaxX21-sY and a 

tyrosine-sulfated protein from bacteria [34]. The conserved 

epitopes derived from bacterial cold shock protein bind to the 

cell-surface receptors from tomato (CORE) and tobacco 

(NbCSPR) [35-37]. Likewise, Arabidopsis RLP23 binds the 

epitope nlp-20, a conserved peptide derived from ethylene-

inducing peptide1- like proteins of bacterial and filamentous 

pathogens [38]. 

 

Recognition of carbohydrate 
Several different classes of receptors capable of sensing 

different carbohydrate ligands also have been found. 

Carbohydrate MAMPs such as bacterial peptidoglycan 

(PGN), lipopolysaccharide (LPS), and fungal chitin are 

perceived by LysM-RLKs/LysM-RLPs and LectinRK LORE 
[39-40]. 

 

Regulation of cell-surface receptor  

For maintaining cell-surface receptors in an inactive state in 

the absence of ligand binding, plants employ various 

strategies that include ubiquitination by E3 ligases and the 

regulation of phosphorylation state [40-44]. Therefore, the plant 

cell-surface immune receptors activity is tightly controlled 

mainly Phosphorylation to prevent any inappropriate 

signaling [40]. 

To prevent the potentially harmful effects of autoinduction 
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plants use phosphatases to negatively regulate cell-surface 

receptors. For example, dephosphorylates BAK1/EFR to 

control defense signaling, Arabidopsis PP2A (Protein 

Phosphatase 2A), a serine/threonine phosphatase [4-47]. 

Similarly, PP2C38 regulates ligand-induced phosphorylation 

of BIK1, moderating signaling by this key transducer of cell-

surface immunity [40]. The use of pseudo kinases, such as 

BIR1 and BIR2 to negatively regulate cell surface immunity 

could also be a Second strategy. They are catalytically 

inactive but interact with BAK1 in its resting state, preventing 

the association of LRR-RLKs [48-50]. This inhibitory 

interaction is relieved by ligand binding and thus leading to 

the formation of activated immune complexes. 

Immunity can also be regulated by controlled degradation 

through ubiquitination. Two closely related E3-ubiquitin 

ligases, PUB25 and PUB26, together with both a calcium-

dependent protein kinase CPK28 and a heterotrimeric G 

protein, form a regulatory module and maintain BIK1 

homeostasis [49]. Similarly, PUB12 and PUB13 

polyubiquitinate and mediate degradation of ligand-bound 

FLS2 [51-53]. 

 

Intracellular immunity 

Effectors: Master manipulators of plant cells  
Master manipulators of plant cells that promote infection are 

the effectors. For the best understanding of the interplay 

between the pathogens/pests and the plant immune system, 

let’s first discuss the effectors and their role in promoting host 

infection. The term ‘effectors’ is used to define protein 

molecules secreted by microbial pathogens and microbes to 

promote signal transduction from extracellular to intracellular 

of the host [53]. These effectors can be delivered to the 

extracellular space or deployed to the inside of host cells. 

Therefore, in the broadest definition, the molecules including 

microbes, plants, and animals to modulate the activity of 

another organism (plant) are effectors. 

 

Interaction between the extracellular and intracellular 

immune response to deal with pathogens. 

These interactions can be understood by four phases proposed 

by Jones and Dangl known as the ‘Zigzag model’ [54]. It 

mainly explains that two branches PTI (Pattern-Triggered 

Immunity) and ETI (Effector-Triggered Immunity) [54]. 

PTI is mainly dependent on the upon conserved plasma 

membrane-associated extracellular Pattern-Recognition 

Receptors (PRRs) [55-56], such as Receptor-Like Kinases 

(RLKs) and Receptor-Like Proteins. RLPs and RLKs are 

similar but the only difference is that RLPs lack a cytoplasmic 

kinase domain. PTI is mostly achieved without the death of 

the host plant cells. RLPs detecting highly conserved 

microbial features (a.k.a. Pathogen-Associated Molecular 

Patterns, PAMPs) such as bacterial cell wall-derived 

peptidoglycans or flagella fragments in the host apoplast. 

When secreted proteins, knowns as effectors, move inside the 

host, some of the effectors act on PTI to neutralize it and 

other effectors tries to manipulate the host cell metabolism 

and use the nutrients host [57-58]. same host plant might have 

highly variable intracellular receptors known as disease 

resistance (R) proteins that can recognize effectors and try to 

encounter or neutralize the effector, after the successful 

encounter of effectors activation of ETI. ETI is often led to 

programmed cell death of the affected cell, which also called 

as a hypersensitive response (HR) [59-60]. 

 

 
 

Fig 2: The above ‘Zigzag model’ can be explain in Four phase. 

 

Phase 1: - PAMPs DAMPs/ MAMPs) are recognized by 

PRRs, thus contributing in activating PAMP-triggered 

immunity (PTI) and then this PAMP-triggered immunity 

(PTI) will try to block or retarded further colonization of 

pathogen. A tag of war occurs between host immune system 

and pathogens, and in some instances, pathogen might win the 

first phase. Then,  

In phase 2, Effectors are spread out by successful pathogens 

which lead to pathogen virulence and these effectors can 

interfere with PTI and therefore, resulting in effector-

triggered susceptibility (ETS).  

In phase 3, One of the NB-LRR proteins specifically 

recognizes the effector, resulting in effector-triggered 

immunity (ETI) and this ETI is an accelerated and amplified 

PTI response which results in disease resistance and, usually, 

at the infection site a hypersensitive cell death response (HR) 

occurs. Also, this recognition of effector is either indirect, or 

directly through NB-LRR. 

In phase 4, through the gain of new effectors through 

horizontal gene flow, pathogens will be driven to avoid ETI 
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by one of the two ways either by acquiring additional 

effectors that suppress ETI or by shedding or diversifying the 

recognized effector gene. Natural selection might result in 

favor of new plant NB-LRR alleles that result in 

new R specificities so that ETI can be triggered again. 

So this tug of war between pathogen and plant immune 

system can be summarized as follows, Both PTI and ETI join 

together for a rapid explosion/burst of extracellular reactive 

oxygen species (ROS), which cascade the activation of 

mitogen‐ activated protein kinases (MAPKs) and calcium‐
dependent protein kinases (CPKs), which increase in cytosolic 

calcium, change in ion fluxes, increase of phytohormones, 

thus overall reprogramming of the host plant for death signal 
[61-62]. During ETI, the amplitude of these responses is much 

higher than in PTI and this often leads to induction of a type 

of programmed cell death (also called as the hypersensitive 

response (HR)) at the site of infection that results in the 

overall restriction of the pathogen by localized cell death. On 

the other hand, pathogens are likely to contribute to the 

suppression of one or more components of PTI or ETI. These 

vice versa process mainly depend upon, in which way natural 

selection favor the process [63]. 
 

HR (hypersensitive response) 
A form of programmed cell death- the hypersensitive 

response (HR), is often lead to the inhibition of pathogen 

growth due to NB-LRRs in plants. HR is a specific and 

unique type of cell death. The chloroplast has an important 

role in HR firstly, many effectors have chloroplast 

localization signals [65], sometime these effectors, have shown 

to suppress immunity [66-67]. Secondly, HR make up a very 

important source of security signaling molecules for example 

as reactive nitrogen oxide intermediates (NOI), reactive 

oxygen species (ROS), defense hormones jasmonic acid (JA) 

and salicylic acid (SA).Thirdly, light is also required for HR 

development in many cases. During the final stages some of 

its typical hallmarks are vacuolization and chloroplast 

disruption [64]. Thus, ROS produced by plant organelles such 

as chloroplast, mitochondria and peroxisomes contribute to 

the HR response. Thus, in plants the molecular events that 

lead to HR are given below. ETI are partly overlapping with 

those associated with MTI, including accumulation of SA, 

ROS and NOI, activation of MAPK cascades, changes in 

intracellular calcium levels, transcriptional reprogramming 

and synthesis of antimicrobial compounds [64]. 

 

Co-evolution of R genes (plant) and the effector 

(pathogen)  

 

 
 

Fig 3: Co-evolution of R genes (plant) and the effector (pathogen) 

 

A pathogen has an effector gene (E1) that is sensed by a 

rare R1 allele (top). This led to selection of an elevated 

frequency of R1 in the population. Pathogens in which the 

effector is mutated are then selected, because they can grow 

on R1-containing plants (right). R1 effectiveness erodes, and, 

because at least some R genes have associated fitness costs 
[68], plants carrying R1 can have reduced fitness (bottom), 

resulting in reduced R1 frequencies. The pathogen population 

will still contain individuals with E1. In the absence 

of R1, E1 will confer increased fitness, and its frequency in 

the population will increase (left). This will lead to 

resumption of selection for R1 (top). In populations of plants 

and pathogens, this cycle is continuously turning, with scores 

of effectors and many alleles at various R loci in play [69]. 
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