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Classical swine fever: Pathogenesis and prevention 

 
Shalu Kumari Pathak, Vaishali Sah and Avinash Kumar  

 
Abstract 
Classical swine fever virus (CSFV) is a highly contagious viral disease of domestic pigs, wild boar and 

feral pigs. In Europe, the wild boar population is an important reservoir for the virus, and represents a 

source for reintroduction of the disease in domestic pigs. It is a listed disease by world Organization for 

Animal Health (OIE). Classical swine fever virus (CSFV) infection of pigs causes disease courses from 

life-threatening to asymptomatic, depending on the virulence of the virus strain and the 

immunocompetence of the host. The disease is characterized by acute, subacute, chronic, late onset, or in 

apparent course, depending on a variety of viral and host factors of which the age of the animals, the 

virulence of the virus and the time of infection (pre- or post-natal) are of greatest importance. At present, 

live-attenuated vaccines are routinely used. These are often based on either the ‘Chinese’ (C) strain, on 

the cell culture adapted Japanese guinea-pig exaltation-negative (GPE−) strain or on the French cell 

culture adapted Thiverval strain. Massive vaccination with live attenuated vaccines, such as C-strain has 

been implemented routinely as a major control strategy. 
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1. Introduction 

Classical Swine Fever (CSF), also called Hog Cholera or European Swine Fever, caused by 

CSF virus is one of the most important infectious diseases of pigs and wild boar, causing 

significant economic losses to the pig industry all over the world (Westergaard et al., 1990) [51]. 

It is a serious, often fatal, economically damaging disease of swine which can spread in an 

epizootic form as well as establish enzootic infections in domestic and wild pig populations 

(Edwards et al. 2000) [8]. It is one of the listed diseases of the World organization for animal 

health or Office International des Epizooties (OlE). Successful eradication has been achieved 

in many countries, including North America, Australia, and parts of Northern Europe in 

absence of vaccination, for rest of the pig producing countries CSF remains a serious threat, 

because of the globalisation and intensification of pig trade and transport, the increase in pig 

densities in many areas, increased numbers of wild boar, which act as reservoirs of CSF virus 

(CSFV), and the feeding of improperly sterilized swill (Van, 2003) [49]. 

 

2. History 

CSF was first recorded in Ohio, USA in 1833 but an epizootic resembling CSF became 

reported in France in 1822 (Cole et al. 1962) [5]. The disease became widespread in Europe and 

America by 1866. Brich reported that the development of railways during the mid 19 th century 

facilitated the spread of virus. In India the first suspected case of CSF occurred in Aligarh in 

1944 (Krishnamurthy 1964). 

 

3. Etiology 

CSFV is a member of the genus pestivirus within the Flaviviridae family. It is a 

spherical/icosahedral shaped virus particle of 40–60 nm in diameter, consisting of a lipid 

envelope surrounded by a nucleocapsid packaging a positive-strand RNA genome. The 12.5 

kb CSFV genome consists of one large open reading frame (ORF) that encodes an 

approximately 4000-aminoacid polyprotein which is co- and post-translationally processed 

into 11–12 final cleavage products (NH2-Npro-C-Erns-E1-E2-p7- NS2-NS3-NS4A-NS4B-

NS5A-NS5B-COOH) using cellular and viral proteases (Rice, 1996). The ORF is flanked by 

untranslated regions (UTRs) that are highly conserved among virus isolates (Risatti et al., 

2003) [24]. Despite the availability of various CSFV genomic sequences representing varying 

virulence phenotypes, the genetic basis of CSFV virulence in the natural host remains poorly 

understood (Van 1999) [47]. However, several viral determinants of virulence have been: 
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identified in Npro (Mayer et al., 2004; Meyers et al., 1999; 

Moser et al., 2001; Risatti et al., 2005a, b, 2006, 2007a,b; 

Ruggli et al., 2005, 2003; Tratschin et al., 1998; Van Gennip 

et al., 2002, 2004, 2005; Van Rijn et al., 1994) [14, 15, 43, 23, 25-28, 

30, 43, 45-49]. 

 

4. Epidemiology 

CSFV isolates from different parts of the world have been 

placed in to various genomic groups/subgroups (Lowings et 

al., 1996) [13]. Major genetic groups being 1, 2, 3 and 10 with 

subgroups. In Asia, CSF epidemics are also fairly ubiquitous. 

Strains of genotypes 1, 2, and 3 have been isolated in different 

Asian countries (Paton et al., 2000, Blacksell et al., 2005) [18, 

3]. Furthermore, isolates belonging to group 3 seem to occur 

solely in Asia (Vlasova et al., 2003) [50]. CSF is endemic in 

India. Phylogenetic analysis revealed that all CSFV isolates 

during 2005-2007 from domestic pigs in different districts of 

Assam belonged to group 1 and subgroup 1.1 in contrast to 

the situation in other Asian countries (Sarma et al., 2011) [34]. 

Seventeen CSFV isolates recovered during the period of 3 

years (2006-2008) from India could be grouped into two 

subgroups, 1.1 and 2.2 (Patil et al., 2010) [17]. Another study 

demonstrated that CSFV field isolates from India (3 isolates) 

belonged to genotype 2.1 and were closely related to 

European CSFV strains, and the remaining 6 isolates 

belonged to genotype 1 that contained old and new strains. It 

also indicated circulation of both genotypes 1 and 2.1 in 

north-eastern part of India (Desai et al., 2010) [6]. One of the 

isolates from Mizoram was closely related to Chinese strain 

Shimen (Barman et al., 2010) [1]. Phylogenetic 

characterization of Indian virulent (CSFV/ MP) and lapinised 

strain (CSFV/LAP) at I.V.R.I Izatnagar placed both the 

strains into genogroups 1.1(Gupta et al 2011) [9] 

 

5. Pathogenesis 

CSFV has tropism for vascular endothelial and immune 

system cells, mainly those that are derived from the 

monocyte-lineage (Summerfield et al., 1998 a, 2001) [36]. 

After oronasal infection, CSFV passes through the epithelial 

cells and cells of the tonsilar crypts, the primary target tissue 

for virus replication. Thereafter, the virus is found in the 

tonsils and local oropharyngeal lymph nodes (Ressang et al., 

1973 and Trautwein et al., 1988) [21, 44]. A particular affinity of 

the virus for the reticuloendothelial cell system has been 

noted with macrophages. Macrophage, dendritic cells (DC) 

and endothelial cells (EDC) being the primary targets 

(Summerfield et al., 1998; Knoetig et al., 1999) [36, 11]. From 

these primary sites of replication, the virus spreads to other 

lymphoid organs. Such secondary target organs include the 

spleen, lymph nodes, gut associated lymphoid tissue, bone 

marrow and thymus. CSFV has also been found in the 

pancreas, brain, heart, gall and urinary bladders, mandibular 

salivary and adrenal glands, thyroid, liver and kidney, 

particularly in association with EDC and macrophages. The 

invasion of CSFV to the host immune system can cause 

severe lymphopenia which is the hallmark of CSFV infection, 

resulting in immunosuppression (Jamin et al., 2008) [10]. 

CSFV can also penetrate the placenta to establish an infection 

in the developing fetus, resulting in the birth of persistently 

infected animals. The per acute and acute disease is 

characterised by pyrexia, anorexia, central nervous disorders, 

diarrhea and in some cases also haemorrhages of the skin, 

mucosa and various other organs. 

 

The virulent CSFV strains can induce a typical hemorrhagic 

fever with immunological characteristics common to all viral 

hemorrhagic fevers. The disease is associated with severe 

lymphopenia and lymphocyte apoptosis (Summerfield et al., 

1998) [36] thrombocytopenia (Trautwein et al., 1998) [44], 

platelet aggregation (Bautista et al., 2002) [2], bone marrow 

depletion affecting myelopoiesis and magakaryocytopoiesis 

and thymus atrophy as well as thymocyte apoptosis. 

Lymphoid depletion is generalized, not only affecting 

peripheral blood and lymph nodes but also the mucosal tissue. 

At later stages, disseminated intravascular coagulation (DIC), 

petechial bleedings and haemoconcentration can be found 

which can result in a circulation failure hypotension and 

death. A recent study however suggests that the hemorrhagic 

lesions observed in the late stages of the disease are not 

attributable to DIC. Inhibition of diffuse fibrin and thrombi 

formation did not influence the extent of haemorrhagic 

lesions. From this, it was concluded that DIC was not the 

cause for the thrombocytopenia and haemorrhages observed 

in acute-lethal CSF (Blome et al., 2013) [4]. 

Very high levels of serum interferon (IFN)-α are a hallmark of 

the acute disease phase induced by virulent CSFV. It appears 

that the levels of IFN-α found in the serum correlate with 

disease severity and the virulence of the isolate used for 

infection (Ruggli et al., 2009) [31]. In younger animals a 

correlation between serum IFN-α levels and the degree of 

lymphopenia induced by CSFV was found. The onset of 

severe lymphopenia was concomitant with the IFN-α 

responses, and all animals with serum IFN-α had depleted 

peripheral B and T lymphocytes (Summerfield et al., 2006) 

[35]. These observations concluded that high levels of IFN-α 

cannot control the virus but may rather mediate aberrant 

responses leading to immunopathology. Microarray analyses 

of PBMC isolated from infected pigs confirmed not only the 

dominance of IFN stimulated genes but also of cell death 

receptor and apoptosis pathways such as TRAIL, FAS and 

TNF relating to previous studies performed with peripheral 

blood cells using flow cytometry (Summerfield et al.,1998) 

[36]. Type I interferon (IFN) has broad antiviral and 

immunomodulatory effects and is part of the innate immune 

response against viruses. Type I IFN has beneficial effects in 

viral infections, restricting viral dissemination and promoting 

immunopathological events when released at high levels over 

a longer duration (Summerfield et al., 2006) [35]. However, 

CSFV exacerbates the IFN-α response, which is detected in 

the serum of infected pigs; this response been hypothesized to 

be related to disease severity rather than to protective immune 

responses (Summerfield et al., 2006; Tarradas et al., 2010) [35, 

42]. 

In vivo macrophage infection and morphological signs of 

activation were found in various organs like spleen, kidney, 

lung, liver and the intestine. The infection of pigs was 

associated with macrophages producing pro-inflammatory 

cytokines, such as IL-1α, IL-1β, IL-6 and TNF-α. There is 

also evidence for macrophage activation leading to the 

production of vasoactive mediators including prostaglandin 

E2 (Knoetig et al., 1999) [11] and platelet activation. Therefore, 

MФ infection and activation has been proposed to play an 

important role in CSF pathogenesis, in particular through 

release of pro-inflammatory and vasoactive mediators. 

Despite the severe lymphoid depletion, acute CSF is also 

associated with a pronounced anergy of T lymphocytes in the 

acute phase of the disease (Pauly et al., 1998) [19]. Similarly, 

indication of B-cell activation has been described in terms of 
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an increase in cells expressing the lambda light chain and 

IgM. In separate studies it was seen that IL-2, in conjunction 

with antigen and T cells, promotes the proliferation of B cells 

(Murtaugh, 1994) [16] whose activation is completed through 

the participation of various cytokines including IL-4. The 

division and differentiation of B cells into immunoglobulin-

producing plasma cells is induced by IL-4 (Van Miert, 1995; 

Roitt et al., 1998) [46, 29]. In CSF, this differentiation 

mechanism appears to be enhanced by an increase in the 

amount of IL-4 released by T lymphocytes, and by the 

eventual predominance of IL-4 over IL-2; this, together with a 

late decrease in IFN-Ƴ, emphasizes replacement of a type 1 

immune response by a type 2 response as the disease 

progresses (Sanchez-Cordon et al., 2005a) [33]. 

 

6. Prevention and Control 

In the highly endemic areas routine vaccination against CSF 

is the most common means used for prevention and control. 

Massive vaccination with live attenuated vaccines, such as C-

strain, developed in China in mid-1950s has been 

implemented routinely as a major control strategy The C 

strain, modified live vaccine (MLV) has been regarded as one 

of the most effective CSF vaccines that provides complete 

clinical and virological protection, i.e. sterile immunity, 

within a week of vaccination (Suradhat et al., 2001; Van 

2003) [40, 49]. It is considered as the gold standard vaccine for 

the control of CSF (Dewulf et al., 2004) [7]. Several strains of 

commercial CSF-MLV, mostly derived from genogroup 1, are 

available in the market. Although, CSF-MLV could 

effectively induce protective immunity in pigs, certain 

conditions are required to achieve complete viral protection. 

Maternally derived antibodies (MDA) is the most common 

factor affecting the induction of protective immunity against 

CSFV in the field. It should be noted that this protective effect 

was observed on the condition that the pigs had low levels of 

MDA (<32) at the time of vaccination (Suradhat et al., 2001; 

Suradhat and Damrongwatanapokin, 2003) [40]. Apart from 

MDA, age at the time of primary vaccination (Suradhat and 

Damrongwatanapokin, 2002) [38] and complication by other 

pathogens also influences protective immunity against CSFV. 

It has been demonstrated that PRRSV infection significantly 

interfered with induction of CSFV-specific immunity which 

resulted in vaccine failure (Suradhat et al., 2006) [41]. 

Recent years have witnessed a growing interest in a field of 

vaccinology that we have named vaccinomics. Vaccinomics 

was defined by Poland et al., (2011) [20] as “the integration of 

immunogenetics and immunogenomics with systems biology 

and immune profiling”. The overall idea behind vaccinomics 

is to identify genetic and other mechanisms and pathways that 

determine immune responses, and thereby provide new 

candidate vaccine approaches. Considerable data show that 

host genetic polymorphisms act as important determinants of 

innate and adaptive immunity to vaccines. The influence of 

HLA genes, non-HLA, and innate genes in inter-individual 

variations in immune responses to viral vaccines are 

examined using population-based gene/SNP association 

studies. The ability to understand relationships between 

immune response gene variants and vaccine-specific 

immunity may assist in designing new vaccines as well as in 

selecting disease resistant animals.  
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