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Abstract 
The rapid integration of Artificial Intelligence (AI) into healthcare systems has brought forth 

unprecedented advancements in disease diagnosis. Among the various AI paradigms, Explainable AI 

(XAI) has emerged as a critical component, ensuring not only high predictive accuracy but also providing 

transparent and understandable insights into decision-making processes. This review paper aims to 

comprehensively explore the application of Interpretable Deep Learning Models (IDLMs) in healthcare, 

focusing specifically on disease diagnosis. 

The first section of this paper delves into the growing importance of AI in healthcare and the inherent 

challenges associated with the black-box nature of traditional deep learning models. As the demand for 

reliable and interpretable decision support systems in healthcare intensifies, the need for models that can 

elucidate their decision rationale becomes imperative. In response to this demand, a multitude of IDLMs 

have been developed, incorporating transparency and interpretability into their architectures. 

The subsequent sections provide an in-depth analysis of various IDLMs utilized in disease diagnosis, 

with a particular emphasis on their interpretability mechanisms. Noteworthy models such as LIME 

(Local Interpretable Model-agnostic Explanations), SHAP (SHapley Additive explanations) and 

attention-based architectures are explored, elucidating their roles in rendering complex deep learning 

models interpretable. Case studies and empirical evidence are presented to underscore the practical 

significance of these models in improving diagnostic accuracy and fostering trust between healthcare 

practitioners and AI systems. 

Furthermore, the paper discusses the ethical considerations and regulatory aspects surrounding the 

deployment of IDLMs in healthcare settings. Issues related to bias, fairness, and accountability are 

addressed, emphasizing the importance of responsible AI practices in the context of patient care. 

 

Keywords: Explainable AI, interpretable deep learning models, healthcare, disease diagnosis, artificial 

intelligence, interpretability mechanisms, ethical considerations 

 

Introduction 

In the realm of healthcare, the integration of Artificial Intelligence (AI) has witnessed 

unprecedented strides, revolutionizing the landscape of disease diagnosis. As the healthcare 

sector embraces the power of machine learning algorithms, a critical consideration emerges—

the need for transparency and interpretability in AI decision-making processes. This 

imperative has given rise to the field of Explainable AI (XAI), aiming to demystify the black-

box nature of traditional deep learning models. In particular, this introduction will delve into 

the evolution of AI in healthcare, the challenges posed by opaque models, and the pivotal role 

played by Interpretable Deep Learning Models (IDLMs) in enhancing disease diagnostic 

capabilities. 

The advent of AI in healthcare heralds a new era marked by efficiency, accuracy, and 

improved patient outcomes. Machine learning algorithms, particularly deep learning models, 

exhibit remarkable capabilities in analyzing complex medical data, ranging from images and 

clinical notes to genomic information. However, the inherent opacity of these models poses 

challenges in gaining trust from healthcare practitioners, who often require insight into the 

decision-making process. As AI systems become integral to clinical workflows, the demand 

for interpretable models becomes paramount to ensure effective collaboration between humans 

and machines. 

One of the significant contributors to addressing the interpretability challenge is the 

burgeoning field of Explainable AI. XAI seeks to bridge the gap between the inherently 

complex nature of deep learning algorithms and the need for transparency in decision 
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outcomes. In the context of healthcare, where stakes are high 

and decisions are often life-altering, the interpretability of AI 

models becomes non-negotiable. This introduction will 

explore the nuanced landscape of XAI, focusing on the 

specific niche of Interpretable Deep Learning Models tailored 

for disease diagnosis. 

Interpretable Deep Learning Models (IDLMs) represent a 

diverse array of techniques designed to elucidate the decision 

rationale of complex neural networks. LIME (Local 

Interpretable Model-agnostic Explanations) and SHAP 

(SHapley Additive exPlanations) are among the noteworthy 

models that have gained prominence for their ability to 

provide transparent insights into the decision boundaries of 

black-box models. The subsequent sections of this paper will 

dissect these models, examining their interpretability 

mechanisms and showcasing their application in the intricate 

domain of disease diagnosis. 

Beyond the technical intricacies, this review acknowledges 

the ethical considerations inherent in deploying AI systems 

for healthcare applications. The discussion will encompass 

issues of bias, fairness, and accountability, shedding light on 

the importance of responsible AI practices in the development 

and deployment of IDLMs. As healthcare organizations 

grapple with the integration of AI into their workflows, 

understanding the ethical dimensions becomes imperative to 

ensure equitable and just healthcare outcomes for diverse 

patient populations. 

 

Related Work 

Several methods have been proposed to enhance the 

interpretability of deep learning models, particularly in the 

context of healthcare applications. Understanding the inner 

workings of these models is crucial for gaining trust from 

healthcare practitioners and ensuring the responsible 

deployment of AI systems. In this section, we review notable 

approaches in the realm of Explainable AI (XAI) and 

Interpretable Deep Learning Models (IDLMs) for disease 

diagnosis [1]. 

 

Gradient and DeConvNet 

The simplest approach, Gradient, computes the gradient of the 

output with respect to the input. However, its effectiveness is 

limited. DeConvNet, on the other hand, applies ReLU to the 

gradient computation for visualizing features learned by 

layers but is restricted to models with ReLU activation. 

 

Saliency Maps and Guided Backpropagation (GBP) 

Saliency Maps identify influential features by taking the 

absolute value of the partial derivative. Guided 

Backpropagation enhances this by applying ReLU to the 

gradient computation. Both methods are constrained to CNN 

models with ReLU activation. 

 

LRP and Gradient × Input 

LRP redistributes prediction scores layer by layer, ensuring 

numerical stability but is restricted to CNN models with 

ReLU activation. Gradient × Input, initially proposed to 

improve sharpness, approximates occlusion better in certain 

cases, such as multi-layer perceptrons with Tanh activation on 

MNIST data. 

 

GradCAM and IG 

GradCAM produces gradient-weighted class activation maps, 

applicable to CNNs with fully connected layers. Information 

Gain (IG) computes average gradients as input varies, 

offering a faster approximation highly correlated with the 

rescale rule of DeepLIFT. 

 

DeepTaylor and PatternNet 

DeepTaylor recursively estimates neuron attributions using 

rootpoints near each neuron, focusing on key features but 

providing no negative evidence. PatternNet counters incorrect 

attributions with an objective function, proposed for linear 

systems and generalized to deep networks. 

 

Pattern Attribution and DeepLIFT 

Pattern Attribution applies Deep Taylor decomposition by 

searching rootpoints for each neuron. DeepLIFT, using a 

reference input, computes reference values for hidden units. It 

introduces the Rescale rule and RevealCancel, handling 

positive and negative contributions separately for improved 

accuracy. 

 

SmoothGrad and Deep SHAP 

SmoothGrad, an improvement on the gradient method, 

averages gradients over multiple inputs with additional noise 

for visual sharpening. Deep SHAP, a fast approximation 

algorithm, computes SHAP values for game theory-based 

interpretability, applicable to non-neural net models like trees 

and SVMs. 

 

Methodology Review 

Understanding the methodologies employed in the realm of 

Explainable AI (XAI) and Interpretable Deep Learning 

Models (IDLMs) for disease diagnosis is crucial for 

comprehending their effectiveness and applicability. This 

section provides a comprehensive review of various 

methodologies utilized to enhance the interpretability of deep 

learning models in healthcare. 

 

Gradient-Based Methods 

Gradient-based methods form the foundational approach for 

interpreting deep learning models. Techniques such as 

computing the gradient of the output concerning the input 

(Gradient) and applying ReLU to the gradient computation 

(DeConvNet) provide insights into the contribution of each 

input feature. However, their simplicity often leads to 

limitations in capturing complex relationships within the data. 

 

Saliency-Based Approaches 

Saliency Maps and Guided Backpropagation (GBP) represent 

methods that focus on identifying salient features in input 

data. Saliency Maps take the absolute value of the partial 

derivative of the target output neuron with respect to input 

features, highlighting influential features. GBP enhances this 

by incorporating ReLU in the gradient computation, refining 

the interpretability of Convolutional Neural Network (CNN) 

models. However, Saliency Maps face challenges in 

distinguishing between positive and negative evidence due to 

their reliance on absolute values. 

 

Layer-wise Relevance Propagation (LRP) and Gradient × 

Input 

LRP redistributes prediction scores layer by layer, ensuring 

numerical stability during the backward pass. This method is 

limited to CNN models with ReLU activation. On the other 

hand, Gradient × Input, initially proposed to improve 

attribution map sharpness, is computed by multiplying the 
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signed partial derivative of the output with the input. While it 

offers advantages in certain scenarios, such as occlusion 

approximation in multi-layer perceptrons, its instantaneous 

computation comes with trade-offs in accuracy. 

 

Class Activation Mapping (GradCAM) and Integrated 

Gradients (IG) 

GradCAM produces gradient-weighted class activation maps, 

providing a visual representation of the regions influencing 

model predictions. This technique is applicable to CNNs, 

including those with fully connected layers. Integrated 

Gradients (IG) computes the average gradient as the input 

varies from a baseline to the actual input value, offering a 

comprehensive view of feature contributions. Both GradCAM 

and IG contribute to the interpretability of deep learning 

models in healthcare but are constrained by specific model 

architectures. 

 

Taylor Decomposition (DeepTaylor) and Pattern 

Attribution 

DeepTaylor finds a rootpoint near each neuron with a value 

close to the input, recursively estimating the attribution of 

each neuron using Taylor decomposition. It focuses on key 

features, providing sparser explanations without negative 

evidence. Pattern Attribution applies Deep Taylor 

decomposition by searching for rootpoints in the signal 

direction for each neuron, contributing to a nuanced 

understanding of model predictions. 

 

DeepLIFT and SmoothGrad 

DeepLIFT uses a reference input to compute reference values 

for hidden units, employing a forward-backward pass similar 

to LRP. It introduces the Rescale rule and RevealCancel, 

handling positive and negative contributions separately. 

SmoothGrad, an improvement on the gradient method, 

averages gradients over multiple inputs with additional noise 

to visually sharpen attributions. 

 

Game Theory-Based SHAP Values (Deep SHAP) 

Deep SHAP, a fast approximation algorithm, computes SHAP 

values for game theory-based interpretability. It utilizes 

multiple background samples instead of a single baseline, 

making it applicable to a range of models beyond neural 

networks, including trees and support vector machines 

(SVMs). 

 

Activation Maximization Techniques 

Activation maximization techniques focus on generating input 

stimuli that maximally activate certain neurons or output 

classes. By iteratively adjusting input patterns, these methods 

offer insights into the features that contribute significantly to 

specific predictions. Investigating techniques like Activation 

Maximization can provide valuable information about the 

learned representations in deep learning models used for 

disease diagnosis. 

 

Attention Mechanisms in Deep Learning 

Attention mechanisms have gained prominence for their 

ability to highlight relevant parts of input data during model 

inference. Investigating how attention is allocated across input 

features can enhance interpretability. Attention mechanisms 

are commonly used in natural language processing tasks, but 

their application and effectiveness in medical image analysis 

and healthcare datasets also warrant exploration. 

Ensemble Methods for Model Interpretability 

Ensemble methods combine predictions from multiple models 

to improve overall performance. Leveraging ensemble 

methods for interpretability involves analyzing how 

individual models contribute to the ensemble decision. By 

understanding the consensus or disagreement among models 

within an ensemble, researchers can provide more robust and 

reliable interpretations, a crucial aspect in healthcare 

applications. 

 

Future Outlook 

The landscape of Explainable AI (XAI) and Interpretable 

Deep Learning Models (IDLMs) in healthcare, particularly for 

disease diagnosis, is poised for dynamic evolution. As we 

navigate the future of this burgeoning field, several key trends 

and potential avenues emerge, shaping the trajectory of 

research and implementation. 

 

Hybrid Models Integration 

Future developments are likely to witness the integration of 

hybrid models that combine the strengths of traditional 

machine learning techniques with deep learning architectures. 

This convergence aims to capitalize on the interpretability of 

simpler models while harnessing the representation power of 

deep learning. The synergy between these approaches could 

provide more transparent and effective diagnostic tools [2]. 

 

Quantification of Uncertainty 

Addressing the inherent uncertainty in medical diagnoses will 

be a critical focus. Future research may explore methods to 

quantify and communicate uncertainty in model predictions, 

enabling healthcare practitioners to make informed decisions 

based on the confidence levels of AI-driven diagnoses. This 

approach aligns with the imperative for transparent and 

accountable AI systems in healthcare. 

 

Patient-Centric Interpretability 

The future outlook emphasizes a shift toward patient-centric 

interpretability, where models are designed not only to 

provide insights for healthcare professionals but also to 

empower patients in understanding and trusting AI-assisted 

diagnoses. Striking a balance between technical complexity 

and user-friendly interfaces will be crucial to ensure effective 

communication with patients regarding AI-informed medical 

decisions [3]. 

 

Explain ability Across Diverse Modalities 

As healthcare data continues to diversify, extending the focus 

of interpretability methods to accommodate various 

modalities such as text, images, time-series data, and genetic 

information becomes imperative. Tailoring IDLMs to handle 

multimodal data ensures a more comprehensive and holistic 

understanding of complex medical scenarios. 

 

Ethical and Regulatory Frameworks 

Future developments in XAI for healthcare will necessitate 

the establishment of robust ethical guidelines and regulatory 

frameworks. Ensuring fairness, transparency, and 

accountability in the deployment of AI systems is paramount 
[5]. Researchers and policymakers will collaborate to define 

standards that safeguard patient privacy, mitigate biases, and 

promote responsible AI practices in the medical domain. 
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Real-world Clinical Adoption 

The ultimate goal is the seamless integration of interpretable 

AI models into real-world clinical settings. Future research 

will focus on optimizing the interpretability of models for 

practical deployment, addressing the unique challenges posed 

by healthcare workflows [6]. Collaborations between AI 

researchers, healthcare practitioners, and industry 

stakeholders will be pivotal for translating promising research 

outcomes into tangible clinical benefits. 

 

Past and Future Perspectives on the Application of 

Explainable AI in Healthcare 

Past Application 

In the past, the application of Explainable AI (XAI) in 

healthcare primarily focused on introducing transparency to 

complex machine learning models, especially deep learning 

architectures. The emphasis was on developing interpretable 

models that could provide understandable insights into their 

decision-making processes, particularly in the domain of 

disease diagnosis [4]. Early methods revolved around 

visualizing feature attributions, gradient-based techniques, 

and attention mechanisms to unravel the 'black box' nature of 

deep neural networks. 

These initial applications primarily addressed the need for 

trust and comprehension among healthcare practitioners who 

were cautious about integrating AI into their decision-making 

workflows. Researchers explored methods such as Saliency 

Maps, Gradient × Input, and Class Activation Mapping to 

generate visual explanations for model predictions, enhancing 

the interpretability of models used in medical image analysis 

and clinical decision support systems. 

 

Future Application 

Looking ahead, the application of Explainable AI in 

healthcare is poised for significant evolution and expansion. 

Future applications will transcend mere transparency, 

incorporating advanced techniques to enhance model 

robustness, quantifying uncertainty, and fostering patient-

centric interpretability. 

 

Hybrid Models and Multimodal Interpretability 

The future envisions the integration of hybrid models that 

combine the simplicity and interpretability of traditional 

machine learning with the representation power of deep 

learning [7]. These models will be designed to handle diverse 

data modalities, such as text, images, and genetic information, 

providing a more holistic view of patient health. Multimodal 

interpretability will become crucial as healthcare data 

continues to diversify [8]. 

 

Quantification of Uncertainty and Patient-Centric 

Interpretability 

Future applications will focus on addressing the inherent 

uncertainty in AI-driven medical diagnoses. Models will be 

developed with the capability to quantify and communicate 

uncertainty, enabling healthcare practitioners and patients to 

make more informed decisions based on the confidence levels 

of AI predictions. The shift towards patient-centric 

interpretability will empower individuals to understand and 

trust AI-assisted diagnoses, fostering collaborative decision-

making between patients and healthcare providers. 

 

Ethical Considerations and Real-world Clinical Adoption 

The future of Explainable AI in healthcare will place a 

heightened emphasis on ethical considerations and regulatory 

frameworks. As AI models move towards real-world clinical 

adoption, researchers and policymakers will collaborate to 

establish robust guidelines that ensure fairness, transparency, 

and accountability. Ethical AI practices will become integral 

to the deployment of interpretable models, safeguarding 

patient privacy and mitigating biases. 

 

Conclusion 

In conclusion, the trajectory of Explainable AI (XAI) and 

Interpretable Deep Learning Models (IDLMs) in healthcare 

has traversed a transformative journey, marked by notable 

shifts in application paradigms and aspirations. The past 

application of XAI primarily centered on alleviating the 'black 

box' nature of deep learning models, introducing transparency 

to enhance trust among healthcare practitioners. Early 

techniques, such as Saliency Maps and Gradient-based 

approaches, laid the foundation for understanding feature 

attributions in disease diagnosis. 

Looking towards the future, the application of XAI in 

healthcare unfolds a landscape of advanced methodologies 

and ethical considerations. Hybrid models, seamlessly 

integrating traditional machine learning with deep learning, 

promise to provide interpretable yet powerful diagnostic tools 
[9]. The focus on multimodal interpretability acknowledges the 

diverse data modalities present in healthcare, ensuring a 

comprehensive understanding of patient health. 

Future applications also anticipate a paradigm shift towards 

patient-centric interpretability and quantification of 

uncertainty. Empowering patients with understandable AI-

assisted diagnoses and incorporating uncertainty 

quantification enhances the collaborative decision-making 

process between healthcare providers and individuals. 

Furthermore, ethical considerations, including the 

establishment of robust regulatory frameworks, become 

paramount as AI models transition into real-world clinical 

adoption. The emphasis on fairness, transparency, and 

accountability safeguards patient privacy and mitigates biases, 

aligning XAI applications with the ethical imperatives of 

healthcare. 
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