Anoestrus is a major infertility issue in perspective of buffalo reproduction in India: A review

Ajit Verma, Praveen Kumar, AK Pandey, Sonu Kumari and Sandeep Kumar

Abstract

Buffalo is a major contributor to milk, meat, draught power and leather production in many countries but anoestrous is an important reproductive disorder that causes or effects reproductive performance of it. Anoestrus occur in buffaloes due to many reasons which are highlights under current review. Prevention or earlier diagnosis and treatment of anoestrous problems will improve herd production and help full in reduction in inter-calving period. Hence, current review also covered briefly about treatment and prevention of anoestrous.

Keywords: Buffalo, anoestrous, incidence, cause, treatment

1. Introduction

Buffalo is the most valuable and premier livestock species in Asian countries including India which plays a significant role in the rural agricultural economy due to its unique quality as a multipurpose species contributing toward milk, meat production and draft purpose (Barile, 2005 and Zicarelli, 1994) [23]. Although buffaloes are well adapted to hot and humid climate, their reproductive performance is greatly influence by heat stress (Marai and Haeeb, 2010) [30]. During hot climate reproductive efficiency of buffalo is adversely affected by certain constraints such as late maturity, poor expression of the estrous signs, irregular estrous cycle, silent heat, and seasonality in breeding, poor conception rate/early embryonic mortality and prolonged inter-calving interval (Madan, 1990) [29]. Kumar et al., (2013) [26] reported an estimated loss from anoestrous around Rs. 372.90 per day in buffalo.

Oestrus is defined as a type of sexual behaviour near the time of ovulation which is characterized by the acceptance of the male. Anoestrus indicates the lack of this typical oestrous expression at an expected time. It is generally caused by ovarian dysfunction (true anoestrous), silent ovulation and missing heat. One clinical survey reported cases of anoestrous showed that about 60% of cases were true anoestrous and 33% of cases were silent ovulation (Sah and Nakao, 2010) [49]. Low secretion of luteinising hormones might be one the reason of long postpartum anoestrus (Perera, 2011) [42].

A large variation on incidence of anoestrous in buffaloes has been reported in literatures depending upon species, breed, parity, season, level of nutrition, managemental conditions and geographic environment. In general, it has been reported between 12-29.12% in Jabalpur and Madhya Pradesh (Gupta, 2009; Kumar, 2012 and Purkayastha, 2012) [19, 25, 45] and 9.09–82.50% in other parts of country (Prajapati et al., 2005; Kumar et al., 2007; Jainudeen et al., 1983 and Emadi et al., 2003) [44, 28, 22, 15]. Incidence of anoestrus is higher in adult cattle and buffalo than the heifers (Bharkad and Markandeya, 2003) [17].
Major etiological factors included that causes anoestrous in bovine are; nutrition (Mwaanga and Janowski, 2000; reported that poor and imbalanced diet reduces GnRH secretions) [34], lactation (Youngquist and Threlfall, 2007; reported in high yielders prolactin hormones secreted more which cause negative effect on GnRH secretion that causes anoestrous due to insufficient FSH and LH hormones) [59], season (Singh et al., 2000; observed reduced ovarian activity) [54], parity (Agarwal et al., 2004; explained primiparous have longer intervals to first ovulation than multiparous ones and cows with lower energy balances have longer intervals than those with higher energy balances) [1], suckling (El-Fadaly, 1980 and Honnapagol et al., 1993; found suppression of postpartum ovarian activity and resulting into extended postpartum anoestrous period because of suckling) [14, 21], periparturient diseases (Fonseca et al., 1983 and Opsomer et al., 2000; observed periparturient diseases such as abnormal calvings, metritis, mastitis and ketosis also influence onset of postpartum cyclicity) [16, 38] and stress factors (management or environmental).

Fig 1: Sketch diagramme showing the etiology of anoestrus in buffalo.

Ovarian Pathological or clinical form of anoestrous included; congenital (ovarian aplasia, ovarian hypoplasia and freemartin), true anoestrous (Opsomer et al., 1996; characterized low progesterone levels in milk and blood and inactive ovaries or ovaries with poor follicular growth due to lower low LH level) [38], pyometra (accumulation of pus in uterus with presence of functional CL), cystic ovarian diseases (includes luteal cyst and cystic ovarian degeneration).

Diagnosis of anoestrous occur on the bases; history (failure of displaying the overt signs of estrus by the animals after attaining puberty or 60–90 days post-partum), progesterone estimation (Peter et al., 2009; stated true anoestrus is usually characterized by a lack of ovarian progesterone production) [40], per rectal examination (observed smooth small and inactive ovaries with absence of CL, in true anoestrous according to Agarwal et al., 2004) [1] and ultrasonographically examination (visualize pathological condition of ovaries).

Treatment of anoestrous condition should be done on the bases of their cause, but there is no single treatment is correct. Hence both hormonal and non-hormonal treatment is given to treat the anoestrous animals with various degree of success (Glotra et al., 1970; Deshpande et al., 2000, Agarwal et al., 2001 and Kumar et al., 2005) [18, 12, 2, 27].

Non-hormonal treatment includes; plant based heat inducers (feeding of those plants which are rich in vitamins and minerals along with have estrogenic property which is useful in restoration of cyclicity in anoestrous animals like Murraya koenigii, Nigella sativa, Abroma augusta, Saraca asoca etc.), Utero-ovarian massage (Romanik, 1973; Zduńczyk et al., 1992 and Rahawy, 2009; stated it is an oldest, cheapest effective method to induce estrus in bovine) [48, 60, 46], Lugols’s iodine (cheaper and effective means of management of anoestrous but with variable response has been observed by Tapas et al., 2000; Tomar, 2004; and Gupta et al., 2011) [57, 56, 39].

Hormonal treatment includes; Estrogen based treatment (Saiduddin et al., 1968; Peters, 1984; Garcia–Winder et al., 1988 and McDougall et al., 1994 reported, in presence of dominant follicle, estrogen administration results in expression of estrus and ovulation because of its positive feedback effect over pituitary for LH surge, hence it has been used to induce ovulation) [50, 41, 17, 31], progesterone based treatment (Singh et al., 1988 and Azawi et al., 2012 stated, intravaginal progesterone releasing devices such as progesterone–releasing intravaginal device, controlled internal drug release and CueMate are effective in restoration of cyclicity; upon withdrawal progesterone source or abrupt decrease of progesterone level, stimulated normal follicular phase of the cycle is in anoestrous animals because of negative feedback effect of progesterone over hypothalamus and pituitary for LH release) [53, 4].

Gonadotropic Releasing Hormone (GnRH) based treatment (Dholbe and Gupta, 1986; Sonwane et al., 1994; Narasimha Rao, 1997; Nautiyal et al., 1997 and Prahalad et al., 2010 reported that single intramuscular injection of GnRH analogue has been used effective in induction of estrus and concurrent ovulation with variable response between 45.5 to 87.5% within 4–22 days, by inducing ovulation, if mature follicle is present at the time of administration by inducing the LH surge) [13, 56, 35, 37, 43].

Gonadotrophins based treatment (Muneer et al., 2009; Prahalad et al., 2010 and Kumar, 2012; observed single
intramuscular injection of PMSG or eCG in low doses either alone or in combinations with others has been used successfully to treat anoestrus buffaloes) [32, 43, 25], and Prostaglandin based treatment (Nautiyal et al., 1998 and Singh et al., 2001; reported single dose of PGF2α has been used with a reasonable degree of success for management of silent estrus and in case of persistent CL in buffaloes) [37, 55]. Prevention of anoestrus condition can be achieved by providing good and balanced diet, minerals and vitamins supplementation, better management and environment (Baldi et al., 2000; Anita et al., 2003; Koley and Biswas, 2004; Selvaraju 2009; Sah and Nakao, 2010 and Kumar, 2012) [5, 3, 24, 52, 51, 25]. Improves managemental practices; detect animals under silent heat, routinely pregnancy diagnosis, regularly deworming and treating postpartum uterine infections.

Conclusion

Buffalo is the major livestock species in India. This species has better quality milk production than cattle, and this quality of this species has now drawn attention of several scientists working in the area of reproduction to improve buffalo farming. The buffalo suffers with suboptimal reproductive rhythm especially with true anoestrus and silent estrus. The buffalo experienced with this kind of reproductive problems specially during summer. Moreover, several estrus synchronization protocols have now been implemented to overcome with this problem. The lower circulating melatonin level has also been found during summer than winter which suggest some role in buffalo reproduction however, no any conclusion has until now drawn. The estrus synchronization protocols especially based on progesterone in addition with GnRH played more effective role than other protocols especially in summer season. Moreover, the buffalo provided with good managerial practices had lower incidence of anoestrus and silent estrus problems therefore, this review suggest that the buffalo should be provided with good managerial practices along with mineral mixture in balanced diet to improve the buffalo dairy farming in India.

References

25. Kumar PR, Shukla SN, Purkayastha RD. Economical analysis of the estimated cost of management of anoestrus...
buffaloes under field conditions using different hormonal
26. Kumar S, Misra AK, Singh M. Induction of oestrus in
post-partum anestrus cows with Creastar, GnRH and
27. Kumar R, Singh R, Kumar R. Control of anestrus in
buffaloes through locally available resources. Italian
28. Madan ML. Factors limiting superovulation responses in
embryo transfer programs among buffaloes.
29. Marai IFM, Haebe AAM. Buffalo's biological functions
as affected by heat stress- a review. Livestock Sci. 2010;
127:89-109.
30. McDougall S, Macmillan KL, Williamson NB. The effect
of oestradiol–178 on the rising and plateau dominant
abstr.
31. Muneer S, Sadasiva RK, Solmon RKG. Efficacy of
GnRH–PGF2α, PMSG and PMSG + hCG in postpartum
32. Murugavel K, Antoine D, Raju MS, Lopez-Gatius F. The
effect of addition of equine chorionic gonadotropin to a
progesterone-base estrous synchronization protocol in
buffaloes (Bubalus bubalis) under tropical conditions.
Theriogenology; 2009; 71:1120-1126.
33. Mwaanga ES, Janowski T. Anoestrus in Dairy Cows:
Causes, Prevalence and Clinical Forms. Reprod Dom
34. Narasimha Rao AV, Murthy AK. Studies on reproductive
disorders in cow in Andhra Pradesh Indian Vet. J. 1972;
53:156.
35. Nautiyal H, Shanker U, Agarwal SK. Effect of
gonadotropin releasing hormone (GnRH) on induction of
ovarian cyclicity in pubertal anoestrus buffaloes heifers.
36. Nautiyal H, Shanker U, Agarwal SK. Synchronization of
oestrus using double injection regimen of PGF2α in
anoestrus in dairy cows: A review. Veterinary Quarterly.,
38. Opsomer G, Grohn YT, Hert J, Coryn M, Deluyker H,
de Kruij F. Risk factors for post-partum ovarian
dysfunction in high producing dairy cows in Belgium: a
39. Peter AT, Vos PLAM, Ambroze DJ. Postpartum anestrus
40. Peters AR. Effect of exogenous oestradiol–178 on
gonadotrophin secretion in post–partum beef cows. J.
Reprod. Sci., 2011; 124:194-199
and Placentrex on reproductive performance of
postpartum true anestrus Murrah buffaloes. Indian J
43. Prajapati SB, Ghodasara DJ, Joshi BP, Prajapati KS, Jain
VR. Etiopathological study of endometritis in repeat
44. Purkayastha RD. Efficacy of GnRH and insulin in true
anoestrus buffaloes under field conditions. M.V.Sc. &