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Vascular remodelling increases nitric oxide mediated 

vasorelaxation of uterine artery in pregnant goat 

(Capra hircus) 

 
Harithalakshmi Jandhyam, Soumya Ranjan Rout and Subas Chandra Parija  

 
Abstract 
The present study investigates the role of NO in vasorelaxation of middle uterine artery obtained from 

non-pregnant (NP) and pregnant (P) Capra hircus (Ch). Uterine artery rings (1.5-2 mm) were mounted in 

a four chambered automatic organ bath containing 20 ml MKHS, maintained at pH 7.4. Following 1hr 

equilibration, Phenylephrine (PE) was added to bath in cumulative dose (1ηM-10μM) or in single dose 

(1μM) to induce contraction. ACh (10ηM-10μM) was added cumulatively to the bath either in absence or 

presence of L-NAME or Indomethacin or combination of L-NAME and Indomethacin or SNP (10ηM-

10μM) to relax PE-precontracted rings. Isometric contraction was recorded using highly sensitive force 

transducer connected to power Lab (8/16) data acquisition system. The maximal contraction (Emax) 

obtained from CRC of PE elicited in MUA of P Ch ( 2.19± 0.26g) was significantly greater than that of 

NP Ch (1.61±0.01g). PE-induced sustained contraction (100%) was reduced to 67.77%, 57.88% by ACh 

and 47.28%, 31.30% by SNP in MUA of NP and P Ch, respectively. Endothelium removal in MUA rings 

almost abolished ACh –contraction in NP and P Ch. In presence of L-NAME or Indomethacin or L-

NAME and Indomethacin, ACh-induced contraction was augmented to 90.54%, 74.74%, 91.43% in NP 

and 87.38%, 88.21%, 85.82% in P Ch, respectively. In conclusion, vascular remodeling of uterine artery 

in pregnant goat (i) increased vascular resistance is due to increased sensitivity of α1 adrenoceptor, (ii) 

augmented vasorelaxation to ACh due to endothelial activation of eNOS-NO-cGMP /COX-NO-cAMP 

pathways. We observed for the first time that vascular remodelling in pregnancy augmented the 

contraction and relaxation of uterine artery of goat is due to increased sensitivity of α1-adrenergic 

receptor and EDRF. 
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1. Introduction 

The endothelium plays a role in vascular tonus control through the production of vasoactive 

substances, i.e, endothelium-derived relaxing factor (EDRF) which was later identified as 

nitric oxide (NO) and was named "Molecule of the Year" in 1992 [1]. The NO is an important 

regulator and mediator of numerous processes in the nervous, cardiovascular and immune 

systems, including smooth muscle relaxation, thus resulting in vasodilatation of the artery and 

increasing blood flow, neurotransmission in the nervous system and has been associated with 

neuronal activity and various functions like avoidance learning, macrophage mediated 

cytotoxicity for microbes and tumor cells. Apart from normal activity, NO have been 

associated in pathophysiological states as diverse as septic shock, hypertension, stroke, and 

neurodegenerative Diseases [2]. At present, exogenous NO sources constitute a potent way to 

supplement NO when the body cannot generate enough for normal biological functions. In 

recent developments of novel NO donors, NO releasing devices as well as innovative 

improvements to current NO donors have been investigated [3]. However, not all reactions 

involving free radicals are damaging to cells. The identification of NO as an endothelial-

derived relaxing factor (EDRF) was the first example of a physiological non-toxic biological 

activity of a free radical.  

Normal pregnancy is associated with an increase in uterine blood flow and a decrease in 

uterine vascular resistance [4].The low resistance is attributed to a loss of smooth muscle in 

myometrial resistance vessels as well as augmented dilation of the larger uterine arteries. The 

dilation of the uterine arteries due to pregnancy induced vascular remodelling could be due to 

an increased role of EDRF or EDHF. Considerable evidence indicates that NO plays a role in 

pregnancy-induced uterine vasodilation.
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Acetylcholine is more potent and efficacious in producing 

dilation of isolated uterine arteries from pregnant than from 

non-pregnant patients and abolition of this vasorelaxation by 

NO synthase (NOS) inhibitors confirmed the predominant 

role of NO in ACh mediated vasodilation in uterine artery [5]. 

Increase in basal NO production in pregnant uterine artery 

have been demonstrated in rats [6, 7], guinea pigs [8] and sheep 

[9, 10]. The augmented vasodilatation observed during vascular 

remodelling during pregnancy could be due to increased 

expression of endothelial nitric oxide synthase (eNOS) that 

lead to increased synthesis and release of NO from the 

endothelium [11, 12]. The importance of NO and NO signaling 

during pregnancy is underscored by the vascular and 

reproductive implications evident in mouse knockouts for 

endothelial NO synthase and in rats treated with the NO 

inhibitor NG-nitro-L-arginine methyl ester (L-NAME) during 

pregnancy [13]. L-NAME decreased reproductive performance 

by interfering NO production during vascular remodelling 

that reduces uterine arterial vasodilatation. Both small and 

large uterine artery outward remodeling are significantly 

reduced in this animal model, although the post-NO signaling 

mechanisms are not known [11]. NO and eNOS deficient 

animals have shown increased blood pressure, proteinuria, 

decreased fetal and neonatal weights, and a reduced number 

of viable newborn pups [14]. In contrast, a reduced NO-

signaling has been suggested during pregnancy that could be 

resulting from concurrent expansion of vascular matrix to 

increase its resistance [15]. Mechanisms by which vascular NO 

signaling may be altered include changes in mechanical forces 

(e.g. strain/tensile deformation) secondary to increased 

intravascular pressure or by agonists/hormonal signaling.  

There have been two opposite evidences suggesting that 

vascular remodelling during pregnancy increases or decreases 

endothelial NO. We selected the goat model considering that 

it conceives twice in year, is multiparous and have typical 

physiology of reproduction for evaluation of functional role of 

endothelial NO in uterine vasculature during pregnancy. In 

the present study as there is no information on either pattern 

of contraction-relaxation uterine muscles or uterine 

vasculature in response to endogenous mediators, hormones, 

agonists during non-pregnancy and pregnancy. Considering 

that goat middle uterine artery (MUA) undergoes remodelling 

from non-pregnant state to pregnancy and there is alteration 

of NO signalling in maintaining vascular resistance, we want 

to establish contribution of endothelial relaxing factors (NO/ 

PGI2) by cholinergic stimulation between non pregnant and 

pregnant MUA rings by assessing the sensitivity to either L-

NAME, a eNOS inhibitor, or Indomethacin, a PGI2 inhibitor. 

This work has been well established in human and rat, but no 

such work has been done on goat till now with such a clarity. 

This will focus on the NO signaling pathways involved in 

pregnant goat model and thus helps in future drug discovery. 

 

2. Materials and Methods 

2.1 Ethical guidelines 

This work has been approved by institutional animal ethical 

committee (Registration No: 433/CPCSEA/CVS vide ID. No. 

1586(6)/CVS/dt.03.05.2016 for conducting randomized ex 

vivo animal tissue experiments. 

 

2.2 Preparation of middle uterine artery and functional 

study 

Non-pregnant and pregnant uterus with broad ligament intact 

along with uterine artery were obtained in an aerated ice-cold 

(4-6 °C) Modified Krebs-Henseleit Saline (MKHS) solution 

(mM): NaCl 118, KCl 4.7, CaCl2 2.5, MgSO4 1.2, NaHCO3 

11.9, KH2PO4 1.2 and Dextrose 11.1, (pH 7.4). Secondary 

branch of uterine artery supplied to the uterine horn carefully 

cleared of fascia and connective tissue in MKHS solution 

under continuous aeration. The arteries were cut into 

segments of circular rings measuring 1.5-2 mm in length were 

then mounted between two fine stainless steel L-shaped hooks 

and kept under a resting tension of 1.5 gm in a 

thermostatically controlled (37.0±0.5 ºC) automatic organ 

bath (Pan Lab) of 20 mL capacity bubbled with carbogen 

(95% O2 +5% CO2). The change of isometric tension was 

measured by a highly sensitive isometric force transducer 

(Model: MLT0201, AD instrument, Australia) and analysed 

using chart 7.1.3 software. 

 

2.3 Drugs 

Acetyl Choline, Phenylephrine (Sigma, USA), L-NAME, 

Indomethacin (Cayman Chemical, USA) were employed in 

this study. 

 

2.4 PE-induced concentration-related contractile response 

in MUA rings 

After equilibrating the arterial ring in MKHS for 60 min, PE 

(1nM -10µM) was added to bath in a cumulative manner at an 

increment of 1.0 log unit to obtain concentrated-related 

contractile response. Net tension (gm) at each concentration 

was recorded and maximal percent response at each 

concentration was calculated. Graphs were plotted against-

Log (M) concentration of PE (X-axis) and percent maximal 

response (Y-axis) in order to elicit a sigmoid concentration 

related response curve. Mean maximal response (Emax), mean 

threshold concentration and pEC50 were calculated for MUA 

rings of NP and P Ch. 

 

2.5 ACh/SNP-induced vasorelaxation in PE-precontracted 

arterial rings with intact or denuded endothelium. 

ACh/SNP (10nM-10µM) was added to bath cumulatively 

with 0.5 log unit increment at 4 min interval in order to relax 

PE pre-contracted rings with either intact or denuded 

endothelium. The percent contractile response at each 

concentration of ACh/SNP was calculated by taking the net 

plateau tension (gm) induced by PE as 100%. Emax/EBmax, 

mean threshold concentration and -logEC50/pEC50 were 

calculated for MUA rings for non-pregnant and pregnant 

groups and compared. 

 

2.6 ACh-induced vasorelaxation in PE-precontracted 

arterial rings either in presence of L-NAME or 

Indomethacin or L-NAME and Indomethacin 

The arterial rings were pre incubated with either 10µM of L-

NAME (10µM) or Indomethacin or L-NAME and 

Indomethacin for a period of 10 min prior to PE pre 

contraction. ACh (10nM-10µM) was added with increment of 

0.5 log unit in a cumulative manner into the bath at 4min 

interval after attaining a plateau contraction induced by PE. 

The concentration-related contractile response curves (CRCs) 

of ACh was elicited in presence of L-NAME or Indomethacin 

or L-NAME and Indomethacin and shift of the CRCs were 

compared with non-treated control. Emax/ EBmax, mean 

threshold concentration and -logEC50/EC50, of antagonists 

were calculated for MUA rings for non-pregnant and pregnant 

groups and compared. 
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2.7 Data analysis 

The data was expressed as percentage of the maximum 

contractile response to agonist obtained in the absence of 

antagonist (control) and analyzed by the interactive non-linear 

regression through the computer program Graph Pad Prism 

(Graph Pad Prism Software, San Diego, CA, USA). 

Emax/EBmax, mean threshold concentration and -logEC50 were 

calculated through Graph Pad Prism. GraphPad Quick 

Calcs‘t’ test was used to calculate the P value to determine the 

level of significance and to analyse the data. A ‘p’ value < 

0.05 and <0.001 were considered statistically significant. 

 

3. Results 

3.1 Effect of PE-induced concentration related contractile 

response in MUA of NP and P Ch. 
The pEC50 and Emax for PE (1nM-10μM) obtained from CRC 

response curve elicited in MUA were 6.4±0.05, 1.61±0.01g in 

NP and 5.0±0.04 and 2.19±0.26g, in P Ch, respectively (Fig. 

1). PE (10μM)-induced a contractile response which consists 

of first phasic contraction followed by sustained tonic 

contraction. The mean peak and plateau tension to PE in 

MUA rings of NP (1.65±0.12g, 1.57± 0.10g, n=20) was 

significantly (p<0.05) increased in that of P Ch (2.25±0.14g, 

2.13±0.12g, n=20) (Fig. 2A). Mean time to peak and time to 

plateau obtained from PE-induced a contractile response in 

MUA of NP (371±18.78 sec, 558±20.31 sec, n=20) was not 

altered significantly in P Ch (343±18.2 sec, 505±19.6 sec, 

n=20) (Fig. 2B). 

 

 
 

Fig 1: PE (10μM)-induced concentration response curve in ED+ MUA of non-pregnant (NP) and pregnant (P) Ch. 
 

3.2 ACh/SNP-induced concentrated related response 

curve in PE-precontracted arterial rings 

Table 1 presents the Emax and pEC50 of ACh-induced 

vasorelaxation in MUA of NP and P Ch. ACh/SNP (10nM-

10μM) inhibited PE induced sustained contraction 

differentially in both NP and P Ch. ACh-induced CRC 

response curve in MUA rings of P Ch was shifted to left with 

significant (p<0.001) increase in -logEC50 value (6.83±0.09) 

and decrease in Emax (57.88±1.36%) as compared to that of 

MUA of NP Ch (-logEC50 6.48 ± 0.07, Emax 67.77±0.55%). 

The removal of endothelium shifted the ACh CRC to right in 

MUA of NP Ch with significant (p<0.001) increase in Emax 

(99.37±1.45%) with complete blunting of ACh response 

curve as compared to endothelium intact arterial rings (Fig. 

3A). Similarly, the removal of endothelium shifted the ACh-

induced CRC to right in the MUA of P Ch with significant 

 
Table 1: Emax and pEC50 of ACh (10nM-10μM) in endothelium intact (ED+) or in endothelium denuded (ED-) or in absence (Rmax) or in 

presence (RBmax) of L-NAME (10μM) or Indomethacin (10μM) or L-NAME(L-NAME+Indo, 10μM) and Indomethacin (10μM) in PE (10μM)-

precontracted MUA rings of NP and P Ch. The values are expressed as Mean SEM, N= Total number of MUA rings used in the experiments. 
 

Treatment (ACh) N value 
Emax/EBmax (%) pEC50 

NP P NP P 

Control (ED+) 30 67.77  0.55 57.88  1.36 6.48  0.07 6.83  0.09c 

ED- 6 99.37  1.45a 93.45 0.12ac Blunteda 5.80  0.33a 

L-NAME 6 90.54  1.47a 87.38 0.86ac 7.28  0.24a 6.96  0.15bc 

Indomethacin 6 74.74  1.57a 88.21  1.22ac 6.99  0.25b 6.43  0.42bc 

L-Name + Indo 6 91.43  0.93a 85.82  0.92ac 6.46  0.24 Blunteda 
a (p<0.001), b (p<0.05) represents level of significance between the rows within each column. Data of each row (treated) is compared with the 

data of Control (ED+) within corresponding column. c (p<0.001), d(p<0.05) represents level of significance between the sub-columns (NP and P) 

within each column. Data of each ‘P’ column in a particular row is compared with the corresponding data of ‘NP’ column. 
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Fig 2: A. PE (10μM)-induced mean peak and plateau contractile 

response in ED+ MUA rings of NP and P Ch (** represents level of 

significance P<0.05 between NP and P Ch). B. PE (10μM)-induced 

time to peak and time to plateau in ED+ MUA rings of NP and P Ch. 
 

(p<0.05) decrease in -logEC50 value (5.80±0.33) and increase 

(p<0.001) in Emax (93.45±0.12%) as compared to endothelium 

intact arterial rings (Fig. 3B).SNP (10nM-10μM) inhibited 

PE-induced sustained contraction differentially in both NP 

and P Ch. The SNP-induced response curve (Emax 47.28 

4.77%; pEC50 6.430.03) elicited in MUA rings of NP was 

shifted to left with significant (P<0.05) 

 

 
 

 
 

Fig 3: ACh (10nM-10μM)-induced concentration response curve 

elicited in ED+/- MUA ring of A) NP Ch and B) P Ch. decrease in 

Emax (31.30 4.90%) and pEC50 (6.350.02) in that of P Ch (Fig. 4). 
 

 
 

Fig 4: SNP (10nM-10μM)-induced concentration response curve 

elicited in ED+ MUA ring of NP and P Ch. 
. 

3.3 Effect of ACh-induced vasorelaxation in PE-

precontracted arterial rings in absence or presence of L-

NAME or Indomethacin or L-NAME and Indomethacin  

In MUA of NP Ch, ACh-induced CRC response curve was 

shifted to right with significant (p<0.001) increase in -logEC50 

(7. 28±0.24) and EBmax (90.54±1.47%) in presence of L-

NAME (Fig.5A), significant (p<0.05) increase in both -

logEC50 (6.99±0.02) and EBmax (74.74±1.57%) in presence of 

Indomethacin, non-significant decrease in -logEC50 

(6.46±0.24) and significant (p<0.001) increase in EBmax 

(91.43±0.93%) in presence of both L-NAME and 

indomethacin (Figure 5A). In MUA of P Ch, ACh-induced 

CRC response curve was shifted to right with significant 

(p<0.05) increase in -logEC50 (6.96±0.15) and EBmax 

(87.38±0.86%) in presence of L-NAME, significant (p<0.05) 

increase in both -log EC50 (6.43±0.42), EBmax (88.21±1.22%) 

in presence of Indomethacin, significant (p<0.001) decrease 

in EBmax (85.82±0.92%) and completely blunted ACh-induced 

CRC response curve in presence of L-NAME and 

indomethacin (Figure 5B). 
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Fig 5: ACh (10nM-10μM)-induced concentration response curve 

elicited in or absence (control) or in presence of L-NAME (10μM) or 

Indomethacin (Indo, 10μM) or L-NAME and Indomethacin (L-

NAME+Indo, 10μM) in MUA ring of A) NP Ch and B) P Ch. 

 

4. Discussion 

This study aimed to explore the mechanisms of vasorelaxation 

to ACh in middle uterine arteries of Capra hircus. In order to 

validate the normal vasoreactivity pattern of the MUA rings 

of NP and P Ch, the α1- adrenergic receptor agonist (PE) 

mediated vasocontraction, Muscarinic-receptor (NO) 

mediated vasorelaxation response in PE precontracted tissues 

were examined. The major findings are (i) The Emax of PE was 

significantly augmented in P (2.19±0.26g) as compared to that 

of NP Ch (1.61±0.01g) ii) Emax of ACh in NP (67.77%) was 

decreased in P Ch (57.88%) and vasorelaxation to ACh was 

almost abolished in both ED-MUA rings of NP (99.37%) and 

P (93.45%) Ch (iii) Emax obtained from SNP response curve of 

NP (47.68%) and P (31.30%) (iv) L-NAME or both L-NAME 

and Indomethacin inhibited Emax of ACh almost identically to 

90.54% and 91.43% and Indomethacin inhibited Emax to 

74.74% in NP Ch. In MUA rings of P Ch, L-NAME, 

Indomethacin and both L-NAME and Indomethacin 

attenuated significantly Emax of ACh curve almost identically 

to 87.38%, 88.21%, 85.82% respectively. 

α1-adrenergic agonist mediated vasoconstriction obtained 

from isometric contraction elicited in uterine artery of rat [16], 

sheep [17] guinea pig [18], calf digital artery [19] and bovine 

mammary artery [20] demonstrated that the sensitivity of α1-

adrenergic receptor to its agonists varies with respect to 

species, type and location of vasculature. In earlier studies we 

observed that sensitivity of α1-adrenergic receptor to PE 

varies greatly with respect to Emax and EC50 in ruminal artery 
[21], superior mesenteric artery [22] and pulmonary artery [23] in 

goat. Emax and EC50 of PE was reported to be greater in 

mesenteric artery (2.18±0.24g, 5.58±0.20) [22] than in 

pulmonary arteries (0.6±0.01g, 5.18±0.09) [23]. The Emax and 

pEC50 for PE obtained from CRC response curve elicited in 

MUA were (1.61±0.01g, 6.4±0.05) in NP and (2.19±0.26g, 

5.0±0.04) in P Ch demonstrate that there is increased 

sensitivity α1-adrenergic receptor to PE with advancement of 

pregnancy in uterine artery of goat. The uterine circulation 

exhibits increased responses to α1-adrenergic stimulation 

compared with the systemic circulation, and this adrenergic 

contraction in uterine artery depends on α1-adrenergic 

receptors [24]. Pregnancy significantly increased the contractile 

response to the α1-agonist phenylephrine in rats [16]. This 

difference appears consistent with the increased sensitivity to 

α-adrenergic stimulation in pregnant uterine arteries compared 

with that of non-pregnant one and may be related to the great 

degree of remodeling that vascular bed undergoes during 

gestation [25]. In conclusion, vasoconstrictor response to PE in 

uterine artery of goat clearly demonstrates that there is 

increased sensitivity of α-adrenergic receptor to PE is 

augmented from NP to P Ch and this could be due to vascular 

remodeling of uterine artery in pregnancy 

Acetylcholine produces an endothelium-dependent relaxation 

of blood vessels mediated primarily by nitric oxide (NO) 

which is synthesized from the L-arginine in the vascular 

endothelial cells [1]. ACh-induced vasorelaxation has been 

reported to be endothelium dependent in uterine artery of NP 

guinea pig [26] (Tare et al. 1990) human [5] and canine species 
[27]. Sensitivity of uterine artery to ACh vasorelaxation differ 

greatly among different species of animals like non pregnant 

rat (-log EC50 7.71± 0.04 and Emax 96±1%) [28], and human (-

log IC50 7.4±0.02 and Rmax 77.5±6.3%) [29]. similarly, the 

dilatory response to ACh was observed to be minimal in the 

uterine vascular bed of non-pregnant guinea pigs but 

increased markedly (~10-fold) during pregnancy [18]. The ACh 

(0.1nM-0.1µM) -induced maximal relaxation in uterine artery 

of NP (23%) was observed to be augmented significantly in 

pregnant human and this vasorelaxation was abolished in 

absence of endothelium [5]. In our present study, the Emax 

obtained from ACh concentration response curve elicited in 

MUA rings of NP (67.77%) was decreased in that of P Ch 

(57.88%). ACh has a greater vasorelaxation effect in PE-

precontracted MUA rings (ED+) of PG than NPG. AVR was 

almost abolished in ED- MUA rings of NP and P Ch confirms 

that vasorelaxation to ACh is exclusively mediated via 

endothelium dependent mechanisms.  

During pregnancy vasculature undergoes significant 

expansive remodelling to accommodate the dramatic increase 

in uteroplacental blood flow that is requisite for normal 

pregnancy outcome. Nitric oxide (NO) is a key molecule 

involved in vascular remodelling during pregnancy and that 

expression of endothelial nitric oxide synthase (eNOS) is 

increased during pregnancy, leading to increased synthesis 

and release of NO from the endothelium. In MUA of NP Ch, 

ACh-induced an identical vasorelaxation but pregnancy 

increased vasore laxation to ACh by about 10% clearly 

support that pregnancy induced remodelling differentially 

modulate endothelium dependent NO pathways. Similarly, 

removal of endothelium inhibited the Emax of ACh (99.37% 

and 93.45%) in MUA of NP and P Ch, suggesting that 

cholinergic receptor stimulated endothelium dependent 

vasorelaxation via NO signalling during the process of 

remodelling in pregnancy. It has been established that nitric 

oxide (NO) is a key molecule involved in vascular remodeling 
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during pregnancy and that expression of endothelial nitric 

oxide synthase (eNOS) is increased during pregnancy [11], 

leading to increased synthesis and release of NO from the 

endothelium [12].The increased vasorelaxtion by ACh in MUA 

of P Ch, are in line findings of [11, 12]. 

Further, to examine the altered NO signaling pathways 

involved due to increased release of NO from the endothelium 

during pregnancy, we compared the inhibition of 

vasorelaxation to ACh and histamine by L-NAME and 

Indomethacin that are considered as well-known inhibitors of 

NO signaling molecules namely eNOS and PGI2. We 

observed that vasorelaxation to ACh in presence of L-NAME, 

Indomethacin and combination of both Emax of ACh was 

inhibited to 90.54%, 74.74%, 91.43% in MUA of NP and 

87.38%, 88.21%, 85.82% in MUA of P Ch respectively, 

indicating that cyclooxygenase (COX) exhibited an increased 

sensitivity to indomethacin sensitive component with 

unaltered sensitivity of eNOS to L-NAME in pregnant MUA. 

This clearly suggests that pregnancy induced remodeling 

greatly enhances the cholinergic receptor activated endothelial 

dependent indomethacin sensitive COX and increased 

production of PGI2, which in turn mediated greater 

vasorelaxation of vascular smooth muscle cells (VSMC) via 

cyclic AMP dependent mechanisms in goat MUA. The 

importance of NO and NO signalling during pregnancy is 

underscored by the vascular and reproductive implications 

evident in mouse knockouts for endothelial NO synthase and 

in rats treated with the NO inhibitor NG-nitro-L-arginine 

methyl ester (L-NAME) during pregnancy [11, 13]. The exact 

mechanisms of the rise in uteroplacental perfusion and 

accompanying decrease in vascular reactivity with 

remodelling of uterine artery remain unclear but plasma levels 

of nitrates/nitrites (NOx) and 6-keto- PGF1α, the stable 

metabolites of nitric oxide (NO) and PGI2, are increased 

during pregnancy, suggesting that endogenous vascular NO 

and PGI2 production is increased in gravid animals [6, 30]. PGI2 

production is elevated during normal pregnancy in women 

and reduced in preeclampsia, suggesting important clinical 

significance to endothelial activation in pregnancy and 

dysfunction in diseased states [31]. NOx have also been 

reported to be elevated in human pregnancy, pregnant rats and 

ovine due to increases in uterine cGMP secretion (via 

elevations in uterine endothelium-derived NO) [7, 32]. It has 

been reported that changes observed in eNOS, cPLA2, and 

COX-1 expression (with vs. without endothelium) and 

elevated in pregnant guinea pigs [8] sheep [9] than non-

pregnant. 

Sodium nitroprusside is a potent vasodilator preferentially at 

arterial smooth muscle. Sodium nitroprusside breaks down in 

circulation to release NO by binding to oxyhaemoglobin to 

release cyanide, methaemoglobin and nitric oxide [33]. SNP-

induced relaxation of uterine artery observed in non-pregnant 

and pregnant women [34], guinea pig, rat [35], sheep [36], mice 
[37] and other arteries like rat tail artery [38] and rabbit 

mesenteric artery [39]. SNP (1 nM-100 μM) produced a 

significant relaxation compared to ACh (0.1-100 μM) on 5-

HT (10 μM) and NA (10 μM)-induced contraction in 

endothelium intact rings of goat ruminal artery [40]. Uterine 

artery of pregnant mice were significantly more sensitive to 

SNP than NP mice, indicated by a left shift in the dose-

response curve and a reduced EC50 concentration but in non-

pregnant and pregnant mesenteric arteries there was no 

difference in SNP-induced relaxation [36]. In the present study, 

we observed that the Emax obtained from SNP (10nM-10μM)-

induced response curve elicited in PE- precontracted ED+ 

MUA rings of NP (47.28%) was increased that of P Ch 

(31.30%). This observation clearly shows that the uterine 

artery of P Ch is more sensitive to SNP than that of NP Ch 

and SNP has a greater vasorelaxation effect in PE-

precontracted MUA rings (ED+) of P Ch than NP Ch. In 

conclusion, goat uterine artery is highly sensitive to 

exogenous NO and this NO mediated vasorelaxation is 

prominent in MUA of P than NP Ch. 

 

5. Conclusion 

i) Contractile response in uterine artery is mediated by α1-

adrenergic receptor. ii) Pregnancy increased the sensitivity of 

α1-adrenergic receptor in MUA. iii) Vasorelaxation to ACh 

involves exclusively endothelium dependent mechanisms in 

MUA of both NP and P Ch. iv) Greatly enhances the 

cholinergic receptor activated endothelial dependent 

Indomethacin-sensitive COX via cyclic AMP dependent 

mechanisms v) NO liberator, SNP caused a greater 

vasorelaxtion in P than NP Ch.  
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