Selection of suitable form of processing of cereal (pearl millet & moth bean) for preparation of whey-cereal based fermented beverage (Lassi) prepared by using ncdc-167 culture and 1% fat content

Monika Rani, Dabur RS and Priyanka

Abstract
Fermentation not only makes milk more digestible, but is also a means of increasing the shelf-life and microbiological safety of the products. The demand for fermented milk products is increasing and it has been estimated that about 10% of total milk produced in India is used for preparation of traditional fermented milk products. The objective of the present study was to develop whey-cereal based fermented dairy products. Two different forms of cereal processing (soaked and germinated) of two cereals (pearl millet and moth bean) were used for development of the products and were evaluated for sensory acceptability as well as for growth indicators of NCDC-167 culture. Results revealed that germinated form of cereal processing of both the cereals were found more appropriate for preparation of whey pearl millet fermented dairy product (Lassi) and whey moth bean (Lassi) on the basis of sensory evaluation and starter culture growth indicators.

Keywords: Selection of suitable form of processing of cereal (pearl millet & moth bean) preparation of

Introduction
Preservation of milk solids in form of fermented milk has been considered a very simple and immediately accessible convenient method (Sinha and Sinha, 2000) [20]. The consumer’s interest in fermented milk products is gaining momentum due to the development of new food processing techniques, changing social attitudes; scientific evidence of health benefits of certain ingredients (Korhonen and Pihlanto, 2006; Stanton et al., 2011) [11, 21]. Whey proteins have been known to have biological value superior to that of other naturally occurring proteins (e.g. egg, soya, beef, casein etc.). Millet grains, before consumption and for preparation of food, are usually processed by commonly used traditional processing techniques including decortication, malting, fermentation, roasting, flaking, and grinding to improve their edible, nutritional, and sensory properties. Therefore, with value added strategies and appropriate processing technologies, millet grains especially the pearl millet can find a place in the preparation of several value added and health food products, which may then result in high demand from large urban population and non-traditional millet users (Mal et al., 2010) [22]. Therefore, to make the best use of dairy whey and low cost grains, the present study was proposed to develop delicious and nutritious traditional cereals based fermented dairy products from the combinations of whey, skim milk powder and low cost grain (pearl millet and moth bean) with the following objectives to know the processing effect of pearl millet and moth bean on sensory attributes of whey-cereal based fermented beverage (Lassi) prepared by using NCDC-167 culture and 1% fat content.

Materials and methods
The constituents required for preparation of whey cereal based Lassi were standardized milk (4.5% fat & 8.5% SNF), paneer whey and cream was obtained from the department of Livestock Products Technology, LUVAS, Hisar. Skim milk powder (SMP) of Nova brand, pearl millet and moth bean, cumin, black pepper and salt, glass bottles of 200 ml capacity were bought from the local market. Starter cultures i.e. NCDC-167 (Lactococcus lactis ssp. lactis, Lactococcus lactis ssp. cremoris and Lactococcus lactis ssp. lactis biovar. diacetylactis in 1:1:1 ratio) were procured from Dairy Microbiology Division, National Collection of Dairy Cultures, ICAR-National Dairy Research Institute, Karnal (Haryana)-132001. Pectin (degree

Correspondence
Monika Rani
Assistant Professor, Dairy Technology, College of Dairy Science & Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India

www.thepharmajournal.com
© 2018 TPI
TPI 2018; 7(7): 790-795
NAAS Rating: 5.03
ISSN (P): 2277-8242
ISSN (E): 2277-8243
of esterification 68-70 per cent) and Nisin was procured from Hi Media Laboratories Pvt. Ltd 23, Vadhani Ind, Est., LBS Marg, Mumbai-400086, and India.

Preparation of cereals and whey
One batch of cereals (Pearl millet and Moth beans separately) 25g was soaked and another batch of cereals (Pearl millet and Moth bean separately) 25g were germinated and cereal slurry was prepared by grinding. The whey obtained was passed through muslin cloth to remove suspended particles and obtained fresh whey was neutralized by using powder of sodium bicarbonate (0.5gm/100ml of whey) to adjust pH to 6.8±0.2. Neutralized whey was standardised to 1 per cent fat and 18 per cent total solids level using fresh cream and skim milk powder and then kept in refrigerator till further use.

Preparation of control
Pearl millet control Lassi was prepared as per procedure developed by Modha and Pal (2011) [13] by using standardized milk (4.5% fat & 8.5% SNF) with some modifications. For preparation of control, 500 ml standardized milk was preheated to 40 °C and then 25 gm germinated pearl millet slurry was added. Then the mixture was heated to 90 °C for 5 min and then immediately cooled to 37 °C. Inoculated was done by addition of starter culture @ 3% (NCDC-167) followed by incubation at 37 °C for 6-8 h to obtain desirable acidity (0.7-0.8 % lactic acid).

Preparation of cereals beverage (Lassi)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Per cent</th>
<th>1% Fat Form of Cereal Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture (%)</td>
<td>93.30</td>
<td>7.40±0.79°</td>
</tr>
<tr>
<td>Total solids (%)</td>
<td>6.70</td>
<td>7.00±0.65°</td>
</tr>
<tr>
<td>Lactose (%)</td>
<td>4.88</td>
<td>7.20±0.38°</td>
</tr>
<tr>
<td>Protein (%)</td>
<td>0.68</td>
<td>7.10±0.19°</td>
</tr>
<tr>
<td>Fat (%)</td>
<td>0.65</td>
<td>7.80±0.28°</td>
</tr>
<tr>
<td>Ash (%)</td>
<td>0.49</td>
<td>7.70±0.17°</td>
</tr>
</tbody>
</table>
| *Calculated by difference (T.S.-(Fat+Protein+Ash)

350 ml water was heated to 60 °C in a separate pan. 5.20 gm pectin was added with continuous stirring followed by addition of 7.35gm salt, 0.75gm black pepper and 2.45 gm roasted cumin powder and then heated continuous to 80 °C temperature and then immediate cooled to 30 °C. Then the curd obtained was transferred to electric mixer jar having pectin and spiced water. The mixture was mixed for 2 minutes. The final products (Lassi) was cooled to 5 °C and stored in refrigerator (5-7 °C) for 2 hours before offered for sensory evaluation. Similarly, control of moth bean beverage (Lassi) was prepared replacing pearl millet with moth bean.

Sensory evaluation
Sensory evaluation for attributes viz. colour and appearance, flavour, consistency and overall acceptability were conducted a semi trained panel consisting of faculty members and post graduate students using a 9-point Hedonic scale (Stone et al. 1974). The test samples were presented to the panellists after assigning the suitable codes. The water was served for rinsing the mouth between the samples.

Results & Discussion
Milk Composition
Analysis results indicated that it contained 4.5 fat per cent and 8.5 per cent solid non-fat.

Selection of Pearl Millet Form of Processing

<table>
<thead>
<tr>
<th>Sensory attributes</th>
<th>Control</th>
<th>1% Fat Form of Cereal Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour and Appearance</td>
<td>8.00±0.68°</td>
<td>7.40±0.79°</td>
</tr>
<tr>
<td>Consistency</td>
<td>8.20±0.57°</td>
<td>7.00±0.46°</td>
</tr>
<tr>
<td>Flavour</td>
<td>8.20±0.29°</td>
<td>7.30±0.19°</td>
</tr>
<tr>
<td>Overall Acceptability</td>
<td>8.20±0.35°</td>
<td>7.30±0.26°</td>
</tr>
</tbody>
</table>

Means with different superscripts in a row differ significantly (P<0.05) in each particular group i.e. a,b,c for 1% group.

Selection of suitable form of processing of cereals
The appropriate form of cereal processing, with suitable starter culture and desirable fat per cent was optimized by comparing data obtained from sensory evaluation as well as growth indicators of starter cultures. The results are presented in tables (1-5) and figure 3.
Selection of Suitable Form of Processing Of Cereals (Pearl Millet)

Processing effect of pearl millet on sensory attributes of whey-pearl millet based fermented beverage (Lassi) inoculated with culture NCDC-167

Traditionally made fermented foods are not as per according to the present requirement due to lack of quality maintenance as well as also low in yield. By applying modern process technologies, they can be reinvented, for mass production to meet the consumer’s new demand in response to changing life style. Soaking and germination improved the in vitro protein (14% to 26%) and starch (86% to 112%) digestibility in pearl millet (Archana et al., 2001) [1]. It also led to the reduction of anti-nutrients such as phytic acid, tannins, and polyphenols, which form complexes with protein (Hassan et al., 2006) [8]. Indian fermented milk product known for its refreshing taste, palatability and therapeutic values. It is prepared by fermentation of milk by using lactic acid bacteria. Indian fermented milk product differs from Western fermented milk product in its use of mixed starters of mesophilic lactococci and thermophilic culture. The present study was under taken to prepare whey-cereal based beverage by using mesophilic lactococci (NCDC-167).

Sensory scores of whey-pearl millet based fermented beverage (Lassi) prepared by using NCDC-167 starter culture and with two different fat content are presented in table 2.

Table 3: Processing effect of pearl millet on growth indicators of NCDC-167 culture used to prepare whey-pearl millet based fermented beverage (Lassi) with different fat content

<table>
<thead>
<tr>
<th>Growth factor</th>
<th>Control</th>
<th>1% Fat</th>
<th>Form of Cereal Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Soaking</td>
<td>Germination</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>4.49±0.04a</td>
<td>4.65±0.09b</td>
<td>4.40±0.05b</td>
</tr>
<tr>
<td>Titrable acidity</td>
<td>0.71±0.08a</td>
<td>0.64±0.07a</td>
<td>0.77±0.01a</td>
</tr>
<tr>
<td>Soluble nitrogen (%)</td>
<td>0.24±0.08b</td>
<td>0.14±0.02c</td>
<td>0.22±0.09c</td>
</tr>
<tr>
<td>Acetaldehyde (ppm)</td>
<td>1.25±0.03</td>
<td>1.23±0.01</td>
<td>1.24±0.04</td>
</tr>
</tbody>
</table>

Mean ± SD, n=18

Means with different superscripts in a row differ significantly (P<0.05) in each particular group i.e. a,b,c for 1% group

Whey-pearl millet based Lassi

Panelist preferred colour and appearance and consistency of whey-soaked pearl millet based Lassi at par with whey-germinated pearl millet based Lassi. While flavour and overall acceptability of whey-germinated pearl millet based Lassi was preferred over whey-soaked pearl millet based Lassi by the panelist in scoring but rate at par as like moderately. It is evident from table 2 that judges preferred control beverage over experimental beverages for its colour and appearance, consistency, flavor and overall acceptability. On 9-point hedonic scale judges scores indicated that control beverage rated as liked very much for its colour and appearance, consistency, flavor and overall acceptability whereas experimental beverages irrespective of millet processing form were rated as liked moderately by the panelist almost for all the sensory attributes. Results revealed that processing of cereal had an influence on acceptability of beverage as flavour and overall acceptability of beverage was influenced as panelist scored germinated whey-pearl millet significantly higher than soaked whey-pearl millet. Similar results were reported by Sudha et al. (2016) [21] who observed that beverage made from milk of millet sprouts were acceptable in terms of sensory property (score 7.1-7.3) while the beverage prepared from the milk of soaked millet was unacceptable which may be due to high sedimentation value and wheying off percentage. Modha and Pal (2011) [13] observed effect of form of addition of pearl millet solids and out of total 9 combinations tried (Raw flour, 24 and 48 h germinated flour in 2 stages before and after fermentation and re-fermentation of raw flour), flour of 24 h germinated grains when added to milk solids before fermentation was found better than other forms with overall acceptability score of 7.2 on 9-point Hedonic scale. And also found that raw pearl millet flour and wet ground slurry in all forms provided astringent flavour to the beverage, thus the scores were low. Similarly, Hassan et al., 2006 [8] reported that germination followed by fermentation was more effective in increasing the protein digestibility of pearl millet.

On the basis of above results, it is concluded that germination had significant influence on flavour and overall acceptability of beverage, whey germinated pearl millet based Lassi was scored significantly higher and was selected for further experiments.

Processing effect of pearl millet on growth indicators of NCDC-167 culture

Data of growth indicators of starter culture (NCDC-167) used to prepare whey-pearl millet based fermented beverage (Lassi) with two different fat content is presented in table 3.

Whey-pearl millet based Lassi

Whey-soaked pearl millet based Lassi had shown higher pH value in comparison to control beverage and whey-germinated pearl millet based Lassi. However, significant difference was observed in pH of control beverage and whey-germinated pearl millet based Lassi. Results are in agreement with Ocheme and Chinma (2008) [14] who reported that in case of malted millet grains flour beverage pH decreased. Titrable acidity results had shown reverse trend to pH in case of whey-soaked pearl millet based Lassi. While titrable acidity value was highest among all sample in case of whey-germinated pearl millet based Lassi. It indicates that starter culture growth was better in whey-germinated pearl millet in comparison to control and whey-soaked pearl millet. Results are in agreement with Ocheme and Chinma (2008) [14] who reported that in case of malted millet grains flour beverage total titrable acidity (TTA) significantly increased. This increase in acidity in malted samples could also be as a result of hydrolysis of some complex organic molecules. Moreover, the significant difference between control and germinated also existed between control and germinated regarding TA and pH. This may be because of higher total solids per cent in whey germinated sample as compared to control. Higher total solids contributes to more acidity (Chawla, 1985) [9]. Soluble nitrogen (per cent) was lowest in whey-soaked pearl millet based Lassi in comparison to as well as whey-
germinated pearl millet based Lassi. Results revealed that proteolytic activity was highest in control which was at par with malted pearl millet sample which may be due to increase in protein in whey-germinated pearl millet during malting. Results are in close concord with Inyang and Idoko (2006) [9] who reported increase in protein with increasing malting levels, similar to the observation with ogi made from malted corn (Okoli and Ademiniyi, 1989) [15]. According to Chavan et al., 1989, quality of cereal proteins as well as the content may also be improved by fermentation. Germination may also result in increase in protein probably due to dry matter loss as well as a result of mobilization of storage nitrogen of millet to produce the nutritionally high quality proteins which the young plant needs for its development as suggested by Tsai et al. (1975) [24]. Acetaldehyde content of all the samples of Lassi was observed at par. Sensory results are also confirmed that flavor of whey-germinated pearl millet based Lassi and control Lassi was at par.

Processing Effect of Moth Bean on Sensory Attributes of Whey-Moth Bean Based Fermented Beverage (Lassi) Inoculated With Ncdc-167

Moth bean is commonly grown in arid areas of India and is consumed either as such after cooking or after germination and cooking. The nutritive value of grain legumes depends primarily on their nutrient and the presence or absence of anti-nutrient and toxic factors. Some processing technique, such as soaking, germination, and cooking are highly effective for the reduction of anti-nutritional factors and for improving its organoleptic quality. This study involves the effect of different household processing on sensory attributes and starter culture growth factors in developing whey-moth bean fermented beverage (lassi).

Sensory scores of whey-moth bean based fermented beverage (lassi) prepared by using NCDC-167 culture and different fat content are presented in table 10.

Table 5: Processing effect of moth bean on growth indicators of NCDC-167 culture used to prepare whey-moth bean based fermented beverage (lassi) with 1% fat content

<table>
<thead>
<tr>
<th>Growth indicators</th>
<th>Control</th>
<th>1% Fat Form of Cereal Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Soaking</td>
</tr>
<tr>
<td>pH</td>
<td>4.50±0.01<sup>a</sup></td>
<td>4.56±0.09<sup>b</sup></td>
</tr>
<tr>
<td>Titrable acidity</td>
<td>0.76±0.08<sup>a</sup></td>
<td>0.67±0.03<sup>a</sup></td>
</tr>
<tr>
<td>Soluble nitrogen (%)</td>
<td>0.21±0.04<sup>a</sup></td>
<td>0.14±0.06<sup>a</sup></td>
</tr>
<tr>
<td>Acetaldehyde (ppm)</td>
<td>1.23±0.01<sup>a</sup></td>
<td>1.19±0.02<sup>a</sup></td>
</tr>
</tbody>
</table>

Mean ± SD, n=18

Means with different superscripts in a row differ significantly (P<0.05) in each particular group i.e. a,b,c for 1% group

Whey moth bean based Lassi (1% fat)

Judges scored color and appearance and consistency of whey-soaked moth bean based Lassi sample was scored at par with of whey-germinated moth bean based Lassi sample. The score of whey-germinated moth bean based Lassi was significantly higher for its flavour than whey-soaked moth bean based lassi. Panelists judged overall acceptability of whey-germinated moth bean based Lassi sample significantly higher in comparison to whey-soaked moth bean based Lassi sample. Sensory panelists scored control sample significantly higher than the experimental samples for its colour and appearance, consistency, flavour and overall acceptability. Similar results were also observed by Salve and Mehrajatema (2011) [17] who also found that incorporation of germinated moth bean flour in cakes up 5% replacing Maida could enhance the sensorial as well as nutritional quality characteristics of cake. They also reported that germinated moth bean fortified cake was found to be comparatively more sensorily more acceptable higher than that of control as well as non-germinated moth bean fortified cake. Similarly, Saha and Dunkwal (2009) developed value added spread instant mix by using germinated moth bean and β-carotene rich vegetables and results revealed that the calculated overall mean organoleptic scores for control instant mix (procured from the local market) was to be ranging between 7.0 to 7.2 against 8.2 to 8.7 scores for develop instant mix on nine point hedonic ranking scale.

Processing effect of moth bean on growth indicators of NCDC-167

Data of growth indicators of starter culture (NCDC-167) used to prepare whey- moth bean based fermented beverage (lassi) with different fat content is presented in table 11.

Table 6: Processing effect of moth bean on sensory attributes of whey moth bean based fermented beverage (Lassi) prepared by using NCDC-167 culture and 1% fat content

<table>
<thead>
<tr>
<th>Sensory attributes</th>
<th>Control</th>
<th>1% Fat Form of Cereal Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Soaking</td>
</tr>
<tr>
<td>Colour &appearance</td>
<td>8.00±0.68<sup>a</sup></td>
<td>7.50±0.83<sup>a</sup></td>
</tr>
<tr>
<td>Consistency</td>
<td>8.20±0.57<sup>ab</sup></td>
<td>7.10±0.55<sup>b</sup></td>
</tr>
<tr>
<td>Flavour</td>
<td>8.00±0.29<sup>a</sup></td>
<td>7.20±0.28<sup>a</sup></td>
</tr>
<tr>
<td>Overall Acceptability</td>
<td>8.20±0.35<sup>a</sup></td>
<td>7.30±0.27<sup>a</sup></td>
</tr>
</tbody>
</table>

Mean ± SD, n=18

Means with different superscripts in a row differ significantly (P<0.05) in each particular group i.e. a,b,c for 1% group

Soluble nitrogen per cent was significantly higher in whey-germinated moth bean sample than whey-soaked moth bean sample. While control sample and whey-germinated moth bean sample had statistically similar values. Germination had a little effect on crude protein prepared by different levels of incorporation of content except little increases, which could be due to biosynthesis during germination (Sattar et al., 1989; Venderstoep, 1981) [18, 25]. The protein content decreased from
23.02 to 22.9% in 12 hour soaked and 22.84% in 12 hour salt soaked moth bean seeds. It is also possible thought that the increase in protein was due to changes resulting from the uptake of water during sprouting. Germination produced a small increase in protein utilization in both legumes (soybeans and lupin seeds) (Donangelo et al., 1995) [6]. Similarly, Singh et al. (2015) [9] summarized that the protein concentration increased and the amino acid profile is balanced by germination and fermentation.

Therefore, out of soaking and germination, from 1 percent whey cereal based lassi, germination was selected keeping in consideration the sensory scores and growth indicators and for further product development.

Conclusion
The increasing awareness for nutrition, health and quality food consciousness of consumers and the keen competition in the market, compel the food industry to search for such ingredients, which can impart specific functionalities to food products, while preserving and enhancing the nutritional quality of foodstuffs, in order to sell their products profitably. Whey-cereal based beverage (lassi), pearl millet and moth bean were used and cereals were processed by soaking germinating before making slurry of cereals to develop whey-cereal Lassi. The two different cereal slurry with two different processing treatment were mixed with standardized whey to develop whey-cereal based beverage (lassi) separately. Whey fat content was adjusted to 1 percent by using fresh cream and total solids were enhanced to the tune of 18 percent by adding skim milk powder and inoculated with starter culture viz.NCDC-167 for making curd from the mixture of whey and cereals slurry. Then curd obtained was used for preparing whey-cereal based fermented beverage (lassi) by stirring with addition of pectin and spiced water. Selection of suitable form of cereal processing (soaking & germination) was done on the basis of sensory attributes and growth indicators starter cultures. Present study results indicated that whey-cereal Lassi samples prepared with germinated form with both the cereals i.e. pearl millet as well as moth bean were found most suitable in comparison to prepared using soaked form, because germination form improved the sensory scores and growth indicators (depicting growth characteristics of starter culture). Sensory panelist scores (for flavor and overall acceptability) were recorded highest in samples inoculated with starter culture hving germinated form of cereal slurry.

References
20. Sinha PR, Sinha RN. Importance of good quality dahi in food. Indian Dairyman. 2000; 41:45-47

