www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 TPI 2018; 7(5): 186-189 © 2018 TPI

www.thepharmajournal.com Received: 15-03-2018 Accepted: 16-04-2018

Sahiba

Himalayan Institute of Pharmacy and Research, Atak-Farm, Rajawala, Dehradun, Uttarakhand, India

Mehtab Ali

Himalayan Institute of Pharmacy and Research, Atak-Farm, Rajawala, Dehradun, Uttarakhand, India

Divya Juyal

Himalayan Institute of Pharmacy and Research, Atak-Farm, Rajawala, Dehradun, Uttarakhand, India

A review on pharmacognostical and phytochemical evaluation of *Pyrus pashia* Buch-Ham ex D. Don

Sahiba, Mehtab Ali and Divya Juyal

Abstract

Pyrus pashia Buch-Ham. Ex D. Don is distributed in Himalayan region with higher ethnic uses and it comprising of approximately 38 species in temperate regions of the North hemisphere. Pyrus Pashia is a important medicinal plant, belongs to the family Rosaceae. It is a medium size deciduous tree commonly known as wild pear. The plant has various nutritional and therapeutic importance. The leaves of Pyrus Pashia have been known to have various physiological activities and have many useful polyphenolic therapeutic constituents such as chlorogenic acids flavan-3-ols, arbutin etc. this study comprises macroscopical, microscopical and pharmacogostic evaluations of the plant. Phytochemical and pharmacognostical investigation of Plant revealed the presence of primary and secondary metabolites like alkaloids, glycosides, flavonoids, steroids, saponins and tannins. This review will give the scientific information in a brief manner to the scientific community.

Keywords: Pyrus pashia, macroscopy, phytochemical and pharmacognostic

1. Introduction

Pyrus pashia Buch-Ham ex D. Don, belongs to Rosaceae family, subfamily Maloideae is a medium size fruiting tree, known locally as Indian pear, Himalayan pear and Mehal comprising of approximately 38 species in temperate regions of the North hemisphere (except North America). The leaves of Plant have been known to have various physiological activities and have many useful polyphenol therapeutic constituents such as chlorogenic acids flavan-3-ols, arbutin etc [1].

The leaf extract is used as a tonic for hair loss and woods are used as a major fuel source in the central Himalayan region, and consumed as tea beverages by many monpa community of twang, Arunachal Pradesh (India) ^[2]. Twings of the tree are used in tooth ache problems by the indigenous people of Jammu Kashmir and Laddhak divisions of India ^[3]. *Pyrus pashia* fruits is used for the treatment of dehydration, GI disorder, fever, headache, hysteria and epilepsy ^[4]. Edible flowers is used in Cardiovascular disease and certain cancers, these properties is attributed by the presence of phenolic compounds ^[5].

Fig 1: Morphology of leaves fruits and flowers of Pyrus pashia Buch-Ham ex D. Don.

1.1 Distribution: This Plant is Distributed in Afganistan, China, India, Iran, Bhutan, Myanmar and Nepal at altitude of 700-750m ^[6].

Correspondence Sahiba

Himalayan Institute of Pharmacy and Research, Atak-Farm, Rajawala, Dehradun, Uttarakhand, India

1.2 Species Information [7]

Species	Geographic distribution- site of origin	
Pyrus communis Linn	All Europe	
Pyrus domestica (L.) Sm.	Algeria, Cyprus, Eastern Europe Central West and Meridional	
Pyrus pashia buch ham ex d. don	South Asia, India and china	
Pyrus elaeagrifolia Pall.	Turkey, Albanta and bulgaria	
Pyrus communis Var.	UK, Spain, France	
Pyrus caucastica Fed.	Eastern Europe and Central Europe	
Pyrus crataegifolia Savi	Turkey, Italy and Macedonia	
Pyrus Germanica (L.)	Pyrus Germanica (L.) Middle East, Eastern Europe, Central, Southern and Northern Asia	

2. Pharmacognostic profile

2.1 Taxonomical Classification [8]

Table 1: Taxonomical Classification

Scientific Name	Pyrus pashia
Kingdom	Plantae
Division	Magnoliophyta
Class	Magnoliopside
Order	Rosales
Family	Rosaceae
Subfamily	Maloideae
Genus	Pyrus
Species	P. pashia

2.2 Local Name [9]

Table 2

Language	Synonyms	Language	Synonyms
Hindi	Mahal Mol, Kainath	Panjabi	Kainth, Shegal
Nepali	Passi, Mayal	Kashmiri	Tangi
Kumaoni	Mehal Mol	Urdu	Batangi

2.3 Phamacognostic Evaluation

2.3.1 Macroscopy

Pyrus pashia Buch.-Ham. ex D. Don is a little to medium size tree with ovate-oblong leaves rounded at base, glabrous; flowers show as white in clusters; fruits are globose shaped, dark yellow brown in colour, covered by raise white round spots. bark is grayish brown in outer surface, pale yellow in inner surface, Odour disagreeable, bitter in taste, fracture are irregular ^[1].

The size of leaf in range between 3.8-9.5cm in length and 2.4-6.1 cm in width, the leaf petiole length is in between 1.09-6.17cm ^[10]. The shape leaf is ovate, fruit diameter is up to 2cm and color is yellowish brown ^[11].

3. Chemical Constituents

Physiochemical and Pharmacognostical investigation of the plant revealed the presence of Secondary metabolites like Alkaloids, flavonoids, sterols, triterpenoids and phenolic compounds [12].

Table 3: Phytochemical compounds in Plant of *Pyrus pashia* Buch-Ham ex D. Don [12-13].

Type of Nucleus	Name of Compound	Part used
Sterols	β – sitosterols, β – sitosterol-3-D glucoside	Fruit
Phenolic glycoside	4-o-Z- coumaroyl arbutin and arbutin (hydroquinone-β-D- glucopyranoside)	Flower
Alkaloids	Caffeic acid, and Genistein	Leaves and fruit
Triterpines	Lupeol	Fruit
Flavonoids	quercetin 3-o-β-D-glucopyranoside phloridzin and kaempferol-3-β-D-(6-o-cis-p- coumaroyl) glucopyranoside	Leaves

3.1 Chemical Structure of Compounds

Genistein arbutin caffeic acid

 β - sitosterols Leupol

4. Pharmacological activity

Table 4: Pharmacological activity of Plant of *Pyrus pashia* Buch-Ham ex D. Don.

S. No.	Therapeutic activity	Plant part Used	Solvents	Author/ Year
1.	In vivo Anti inflammatory activity [14].	Leaves	Methanol.	Singh A. et al./2017
2.	Hepatoprotective [15].	Areal parts	Aqueous.	Bawari M. et al./2017
3.	Anti depressant activity [16].	Leaves	Methanol.	Pandey N. et al. /2017
4.	Disinfectant [17].	Leaves	Water.	Malik S.K.et al/2017
5.	<i>In- vivo</i> anti inflammatory activity [18].	Fruit	Methanol.	Chandra S. et al. / 2016
6.	Spasmolytic, bronchodilator and vasoconstrictive activities [5].	Fruit	aqueous ethanol.	Janbaz K.H. et al. /2015
7.	Antioxidant and anti proliferative [19].	Fruit	Methanol & acetone.	Saini R. et al. /2012
8.	Antioxidant activity [2].	Leaves	Chloroform.	Tsering J. et al. /2012
9.	Antimicrobial activity [20].	Bark & fruit	Ethanol	Saklani S. et al. /2012

5. General Uses of Plant *Pyrus pashia* Buch-Ham ex D. Don.

- The *Pyrus* Species contains of pectin which lower down the LDL, triglyceride and VLDL. Thereby reducing risk of high cholesterol.
- The leaves contain arbutin which decreased the melanin in the skin and act as a natural skin whitening agents. [21]
- Fruit juice is astringent and diuretic, manage dysentery, eye problems and anemia.
- Bark is used as astringent, laxative, anthelmintics, fever and in peptic ulcer, gastric ulcer and typhoid fever.
- Fresh leaves are used as astringent, febrifuge, laxative and sedative.
- Leaf extract is used as a tonic for hair loss.
- Fruits used for dehydration, digestive ailments.
- The plant has a no. of medicinal used, it is used in GI disorder, fever headache and sweating of body, hysteria and epilepsy [22].
- Paste of young twings and fresh leaves used for fungal infection of toe [23].

6. Conclusion and discussion

Pyrus pashia is a plant of choice for many health related disorders. There are many primary and secondary metabolites reported from this plant. The extract and phytoconstituents isolated from this plant has shown to produce different pharmacological activities, includes anti inflammatory, antioxidant and hepatoprotective effect. This review article have revealed given pharmacognostical and phytochemical information regarding the Indian wild pear that can help researchers to investigates more on account of its described important properties.

7. Reference

- 1. Arya V, Gupta R, Gupta VK. Pharmacognostic and phytochemical investigations on *Pyrus pashia* Buch.-Ham. Ex D. Don stem bark. Journal of Chemical and Pharmaceutical Research. 2011; 3(3):447-456.
- 2. Tsering J, Gogoi BJ, Tag Hui. Ethnobotany and Phytochemical Analysis of *Pyrus pashia* leaves. International Journal of Pharmaceutical Sciences and Research. 2012; 3(8):2721-2725.
- 3. Sharma P, Hemalatha S, Prasad SK. Quality control Standardization of Wild Himalayan Pear: *Pyrus pashia*. Pharmacognosy Journal. 2016; 8(4):352-360.
- 4. Rasineni GK, Siddavattam D, Reddy AR. Journal of medicinal plants research. 2008; 2(10):285-291.
- 5. Janbaz KH, Saqib F, Hawaz J. Scientific basis for used of *Pyrus pashia* Buch-Ham ex d.don fruit in GI, Respiratory and Cardiovascular ailments. Journal Pone. 2015; 10(3).

- 6. Wang yarong, le cai. phenolic compound and antioxidant activity of edible flowers of *Pyrus pashia*. Journal of functional Foods. 2015; 17:371-379.
- 7. Islam M, Ahmad H, Ali H, Alam J. New record of the genus Pyrus from Pakistan and Azad Kashmir. Iran J. Bot. 2016; 22(2):82-87.
- 8. Silva GJ, Barbieri RL, Souza TM. Origin, Domestication and Dispersing of Pear (Pyrus Species). Advanced in Agriculture. 2014, 1-8.
- 9. Kaur R, Arya V. Ethnomedicinal and Phaytochemical perspectives of Pyrus Communis Linn. Journal of Pharmacognosy and Phytochemistry. 2012; 1(2):14-19.
- 10. Parmar C, Kaushal MK. *Pyrus pashia* in wild fruits. Kalyani Publisher New Delhi India, 1982, 78-80.
- 11. Varma SK, Kishor A, Kumar A. Evaluation of genetic diversity in Wild Pear (*Pyrus pashia*) under kumaon hills of Uttrakhand. Environment and Ecology. 2016; 35(1):524-529.
- 12. Zamani A, Attar F, Joharchi MR. *Pyrus pashia* (Rosaceace), A new record for the flora of Iran. Iran journ. bot. 2009; 15(1):72-75.
- 13. Mian Z, Le Cai, Zhongtao D. Chemical constituents from leaves and branches of *Pyrus pashia*. Chinese Journal of Organic Chemistry. 2013; 33:1284-1290.
- 14. Pandey N, Singh A, Pant J. *In-vivo* anti inflammatory activity of methanolic extract of leaves part of *Pyrus pashia*. World Journal of pharmaceutical Research. 2017; 6(9):621-628.
- Meenakshi B, Rojini A, Chodhury MD. Hepatoprotective activity of aqueous extract of *Pyrus pashia* Buch-Ham ex d. don against CCl₄ induced liver damage. International Journal of Pharmaceutical Sciences. 2017; 8(10):4195-4200.
- 16. Pandey N, Singh A, Pant J. Anti depressant activity of methanolic extract of *Pyrus pashia* leaves in Rats. World Journal of pharmacy and pharmaceutical Sciences. 2017; 6(10):1175-1183.
- 17. Chandra S, Ravindra, Malik SK. Evaluation of *Pyrus pashia* leaves extract as a disinfectant for Rainbow trout fertilized eggs. International Journal of current microbiology and applied Sciences. 2017; 6(1):697-706.
- 18. Chandra S, Saklani S, Kumar S. *In-vivo* anti inflammatory activity of *Pyrus pashia* fruit. World Journal of pharmaceutical Sciences. 2016.
- 19. Saini R, Verma G, Koushalya D. Comparative study of three wild fruits of Uttrakhand for antioxidant, antipriliferative and polyphenolic composition. Internationl Journal of Pharma and Biosciences. 2012; 3(4):158-167.
- 20. Saklani S, Chandra S. In vitro antimicrobial activity

- nutritional profile of medicinal plant of Garhwal, Himalaya. International Journal of Pharmaceutical Sciences and Research. 2012; 3(1):268-272.
- 21. Parle M, Arzoo. Why is Pear so dear. International Journal Research Ayurveda phrma. 2016; 7(1):108-112.
- 22. Thakur S, Sidhu MC. Medicinal plant remedies for dermatological problems. Current Botany. 2017; 8:23-33.
- 23. Siddiqui SZ, Ali S, Rubab K. *Pyrus pashia*: A persuasive source of natural antioxidant. Pakistan Journal of Pharmaceutical Sciences. 2015; 28(5):1763-1772.