www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 TPI 2018; 7(11): 208-214 © 2018 TPI www.thepharmajournal.com Received: 11-09-2018 Accepted: 16-10-2018

Kapil Dev

Ph.D. Scholar, Department of Animal Genetics and Breeding, Luvas, Hisar, Haryana, India

Ravinder Dahiya

Assistant TAM, Cargill India Pvt. Ltd., Haryana, India Estimates of genetic and phenotypic parameters of production performance traits in crossbreed cattle: A review

Kapil Dev and Ravinder Dahiya

Abstract

The success of dairy industry largely depends on the level of production and reproduction performance of the animals and in dairy cattle, milk yield is considered as the most important trait. Crossbreeding programmes has significantly enhanced milk production in India. For maintaining high level of milk production productivity of crossbreed cattle and their further improvement, it is necessary to execute proper programme of genetic evaluation of males and females for selection of animals of high genetic merit. Therefore, including production efficiency traits along with production traits in sire evaluation would enable genetic improvement in production potential along with improvement in fertility traits. The non-genetic factors (e.g. environmental) have an important bearing on these traits and directly obscure recognition of genetic potential. Moreover, the performance records of an animal should be corrected for classifiable non-genetic sources of variation, which is essential for obtaining precise estimates of genetic parameters. The literature pertinent to genetic and phenotypic parameters of various production performance traits up to fifth lactation viz. lactation milk yield (LMY), lactation milk yield-305 (LMY-305), lactation length (LL), peak yield (PY), average daily milk yield (AMY), milk yield per day of calving interval (MCI), milk yield per day of age at second calving (MSC), persistency, age at first calving(AFC), service period (SP), calving interval (CI) and dry period (DP) were reviewed in crossbred cattle. In order to improve performance of dairy animals, it is necessary to develop an understanding of the factors affecting various production performance traits.

Keywords: Crossbred cattle, Heritability, Non-genetic factors

1. Introduction

India occupies pre-eminent position in milk production with an annual output of 165.40 million tonnes accounting for 18.5 per cent of world production. Out of which, share of milk production by exotic/crossbred cows was 25% and that of indigenous/non-descript was 20% (BAHS, 2017). Out of the 190.90 million cattle population, crossbred population was 19.42 million while that of indigenous was 48.12 million (19th Livestock census, DAHD-GOI). Crossing Zebu cattle (Bos indicus) with temperate breed (Bos taurus), undertaken for improving the milk production to cater the needs of ever increasing human population has led to the synthesis of several new crossbred strains of cattle. For maintaining high level of milk production productivity of crossbreed cattle and their further improvement, it is necessary to execute proper programme of genetic evaluation of males and females for selection of animals of high genetic merit. The investigations conducted on genetic improvement of cattle around the world indicate that proper genetic evaluation and selection of bulls brings about nearly 66-75 percent of the realized genetic improvement. Therefore, an accurate evaluation of the bull at minimum possible cost becomes of paramount importance for bringing about rapid genetic progress in dairy cattle. The accuracy of estimating the breeding value of an animal is the major factor that affects the genetic progress due to selection. The success of a breeding programme depends on how early and how accurately young bulls can be proved. If the time required for ranking the sires on the basis of their breeding values can be shortened, it will reduce the generation interval and enhance the selection intensity. In India, the sire evaluation is done mainly on the basis of 305-day or less first lactation milk yield at organized farms. This leads to increased generation interval, decreased genetic gain per unit of time and fewer numbers of daughters per sire due to smaller herd size. Varying reports in vast amount about the genetic and phenotypic parameters of production performance traits in crossbred cattle are available in literature, out of which recent studies has been reviewed.

Correspondence Ravinder Dahiya Assistant TAM, Cargill India Pvt. Ltd., Haryana, India

1.1. Least-squares mean and factors affecting production performance traits

The available literature pertinent to first and overall lactations for various production performance traits viz. lactation milk yield (LMY), lactation milk yield-305 (LMY-305), lactation length (LL), peak yield (PY), average daily milk yield (AMY), milk yield per day of calving interval (MCI), milk yield per day of age at second calving (MSC), persistency, age at first calving(AFC), service period (SP), calving interval (CI) and dry period (DP) has been presented in Table 1. The contents of Table 1 indicated that least-squares mean value of production performance traits viz. LMY, LMY-305, LL, PY, AMY, MCI, MSC, Persistency, AFC, SP, CI and DP ranged from 819.98 ± 16.50 to 3919.66 ± 42.99 kg; 1633 ± 47.00 to 5807.83 ± 78.27 kg; 195.23 ± 2.63 to 343.58 ± 10.37 days; 3.14±0.18 to 13.3 kg; 2.19±0.08 to 12.93±0.99 kg/day; 5.10±0.129 to 15.44 kg/day; 0.60±0.03 to 4.91 kg/day; 61.55 \pm 2.06 to 187.207 \pm 26.40 days; 891.60 \pm 13.5 to 1371.06 ± 15.49 days, 115.46 ± 2.14 to 272 ± 17.1 days, 403.91 ± 2.54 to 529.48 ± 8.51 days and 84.20 ± 8.50 to 318 ± 21.4 days, respectively. The large variations in production performance traits indicated that there is a vast scope of improvement in these traits. The relevant literature pertinent to the effect of period of calving, season of calving and parity on various production performance traits had been summarized in Table 1 indicated that these traits by and large affected by these

factors. Therefore, data must be standardised for various significant effect.

1.2 Effect of period, season and parity of calving: The effect of period of calving on production performance traits had been reviewed and presented below:

2. Estimates of heritability for production performance traits: The available literature pertaining to estimates of heritability of various production performance traits have been presented in Table 1 which indicated that the heritability estimates for LMY, LMY-305, LL, PY, AMY, MCI, MSC, persistency, AFC, SP, CI and DP ranged from 0.12 to 0.48; 0.12 to 0.51; 0.04 to 0.28; 0.02 to 0.28; 0.27 to 0.54; 0.17 to 0.63; 0.25 to 0.41; 0.08 to 0.28, 0.02 to 0.40, 0.07 to 0.35 and 0.26 to 0.42, respectively. From the reports of various workers, it may be concluded that most of traits under study had low to moderate estimates of heritability hence progeny testing coupled with better managemental practices could be a tool for bringing out desirable changes in these traits.

3. Estimates of genetic and phenotypic correlations among production performance traits: The genetic and phenotypic correlations reported among various production performance traits in cattle are reviewed and presented in Table 2.

 Table 1: Estimates of least-squares means, effect of non-genetic factors and heritability on various production and reproduction performance traits in crossbreed cattle

Traits	Breed (No. of lactations)	tations) Means ± S.E Non Genetic factors		actors	h ² ±S.E	References	
	PeriodSeasonParit				Parity		
	H.F cross (1)	832.80±40.34	NS	NS	-	0.40 ± 0.38	Kharat et al. (2008) ^[28]
	Frieswal (1)	2871.11+32.64	S	NS	-	0.35+0.11	Kumar et al. (2008) ^[54]
	Sahiwal cross (1)	3064.74±49.40	S	NS	-	$0.12{\pm}0.06$	Singh et al. (2008)
	Friesian×Sahiwal (12)	2864.32	S	S	S	0.20 ± 0.08	Lakshmi et al. (2009) [34]
	Girhalf	$2971.94{\pm}101.84$	S	S	S	-	Jadhav et al. (2010) [24]
Lactation	Karan Fries (1)	$2822.91{\pm}121.94$	S	S	-	0.26 + 0.06	Saha et al. (2010) ^[45]
milk yield (Kg)	Karan Fries (1)	3762 ± 67	NS	S	-	0.48 ± 0.14	Nehra et al. (2011) ^[38]
	H.F×Deoni (5)	1661.35±15.17	S	S	S	-	Wondifraw et al. (2013) [59]
	H.F crossbreed (5)	2331.18±52.16	NS	NS	S	0.17 ± 0.19	Kumar et al. (2014) ^[53]
	H.F	3919.66±42.99	S	NS	S	0.35	Al-Samarai et al. (2015) [47]
	H.F×Jersey×Sahiwa (1)	-	S	S	S	-	Japheth et al. (2015) ^[25]
	Hardhenu (1)	2262.98±57.52	S	S	-	0.32 ± 0.17	Verma et al. (2016) [58]
	Deoni (5)	819.98 ± 16.50	S	S	S	-	Basak et al. (2018) ^[2]
	Karan-Fries (1)	3068±23	S	S		0.39 ± 0.09	Kokate (2009)
	Friesian×Sahiwal (12)	2593.84	S	-	S	0.18 ± 0.07	Lakshmi et al. (2009) ^[34]
	Sahiwal (1)	2700.52 ± 144.84	-	-	-	0.12	Dandapat <i>et al.</i> (2010) ^[10]
	Karan Fries (1)	2470.35±80.75	S	-	-	$0.30{\pm}0.02$	Saha et al. (2010) ^[45]
	Karan-Fries (1)	3234±64	NS	NS	-	0.21 ± 0.14	Divya (2012) ^[45]
	Friesian (7)	3408.17±48.54	S	S	S	-	Katok and Yanar (2012) ^[27]
Lactation milk	Tunisian Holstein (5)	5807.83±78.27	S	S	S	-	M'hamdi et al. (2012)
yield-305 (kg)	H.F Cross	1633 ± 47	-	-	-	-	Hassan and Khan (2013)
	H.F×Deoni (5)	1707.25±13.25	S	NS	S	-	Wondifraw et al. (2013) ^[59]
	H.F×Jersey×Sahiwal	4113.61±55.90	S	S	S	-	Japheth et al. (2015) ^[25]
	Hardhenu (1)	2331.18±52.16	NS	NS	-	0.17 ± 0.19	Kumar (2015) ^[33]
	Karan Fries (4)	3027.11±203.1	S	S	S	$0.39{\pm}0.09$	Dash et al. (2016) ^[14]
	Hardhenu (1)	1782.97±68.37	S	NS	S	-	Verma et al. (2016) ^[58]
	Frieswal (7)	2997.01 ± 123.24	NS	S	S	0.51 ± 0.14	Kakati et. al. (2017)
	Zebu x Friesian (6)	292.64 0± 8.28	NS	NS	S	-	Ahmed et al. (2007)
	Frieswal (1)	313.34±2.21	S	NS	-	$0.04{\pm}0.06$	Kumar et al. (2008) ^[28]
	Friesian×Sahiwal (12)	329.03	S	NS	S	0.06 ± 0.05	Lakshmi et al. (2009) ^[34]
Lactation	Karan-Fries (1)	315.25±10.10	NS	NS	-	0.21 ± 0.05	Saha et al. (2010) ^[45]
length (days)	Girhalf	333.59±6.34	NS	NS	NS	-	Jadhav et al. (2010) ^[24]
/	Tunisian Holstein (5)	309.6±7.01	S	S	S	-	M'hamdi et al. (2012)
	H.F×Deoni (5)	296.80±2.29	S	NS	-	-	Wondifraw et al. (2013) [59]
	Deoni (1)	213.9±13.74	NS	NS	-	-	Bhutkar et al. (2014)

	H.F crossbreed (5)	275.11±65.23	NS	NS	S	0.28±0.19	Kumar <i>et al.</i> (2014) ^[53]
	H.F	-	S	NS	NS	0.06	Al-Samaraj <i>et al.</i> (2015) ^[47]
	Karan-Fries (5)	298 28+5 48	Š	110	S	0.00	In Summer of $(2015)^{[25]}$
	Sabiwal (6)	215 83+3 08	S	NS	NS	0.22 ± 0.07	Narwaria $et al. (2015)$
	Gir(1)	213.03 ± 3.00	NC	NC	110	0.22 ± 0.07	$\frac{1}{2015}$
	Varian Errica (4)	343.36 ± 10.37	no c	IND C	-	0.17 ± 0.24	Deck at $\pi l_{1}(2016)$
	Karan-Fries (4)	320.37 ± 2.00	3	3	3	0.11±0.03	Dash <i>et al.</i> $(2016)^{101}$
	Murrah (4)	344.0±102.0	-	-	NS	-	Poudal <i>et al.</i> (2017)
	Frieswal (7)	303.31 ± 7.02	S	NS	NS	0.17 ± 0.10	Kakatı et. al. (2017)
	Deoni (5)	195.23 ± 2.63	S	NS	S	-	Basak <i>et al</i> $(2018)^{[2]}$
	Friesian×Sahiwal (12)	13.3	S	NS	S	0.16 ± 0.07	Lakshmi et al. (2009) ^[34]
	Vrindavani (6)	9.5±0.1			S	0.02 ± 0.09	Singh <i>et al.</i> (2011)
D 1 11(1)	Deoni (1)	3.14±0.18	S	NS	-	-	Bhutkar et al. (2014)
Peak yield (kg)	H.F crossbreed (5)	6.88±0.38	NS	S	S	-	Kumar <i>et al.</i> $(2014)^{[53]}$
	Frieswal (1)	10.86±0.16	NS	S	-	0.26 ± 0.22	Kumar (2015) ^[33]
	Hardbenu (1)	10.30+0.21	S	Š	_	0.28 ± 0.17	Verma <i>et al.</i> $(2016)^{[58]}$
	Friesian Sobiwal (12)	8 60±0 27	5	5	S	0.20±0.17	Lakshmi <i>et al.</i> $(2010)^{[34]}$
	Sin dhiy Jangay (4)	6.09±0.27	NO	NC	5	0.27	Lakshill $el al. (2009)^{1/3}$
	Sindni×Jersey (4)	0.78 ± 0.17	INS C	INS C	3	0.44 ± 0.17	Verma and Thakur $(2013)^{[57]}$
	H.F×Deoni (5)	5.65±0.04	5	S	8	-	Wondifraw <i>et al.</i> $(2013)^{[57]}$
Average daily	Karan-Fries (1)	10.8±0.2	S	S	-	-	Divya <i>et al.</i> (2014)
milk yield (kg/day)	Sahiwal (1)	5.34±0.08	S	S	-	0.42 ± 0.08	Dhawan <i>et al.</i> (2015)
	Karan Fries (5)	12.93±0.99	S	S	S	-	Japheth <i>et al.</i> (2015) ^[25]
	Karan-Fries (4)	2.19 ± 0.08	S	S	S	0.35 ± 0.08	Dash et al. (2016) ^[14]
	Jersey (7)	6.97±0.21	S	S	S	0.54	Ratwan et al. (2017)
	Jersey ×Red Dane	5.10±0.129	S	S	-	-	Das et al. (2002)
	Karan-Swiss (1)	8 9+0 2	S	Š	-	_	Singh and Gurnani (2004)
	Holstein (4)	15.44	5	NS	S	0.41	Tekerli and Gundogan (2005)
NC11	Eriogian Schiwol (12)	6 40+0 24	5	ris c	5	0.41	Label and Guidogan (2005)
Nilik yield per day	Filesiali×Salliwal (12)	0.40 ± 0.24	3	S NG	3	0.17	Lakshill <i>et al.</i> $(2009)^{10.1}$
of calving interval	Sindi×Jersey (4)	5.61±0.16	NS	NS	8	-	Verma and Thakur (2013)
(kg/day)	Karan-Fries (1)	9.0±0.2	NS	NS	-	-	Divya <i>et al</i> (2014)
	Karan-Fries (5)	11.08 ± 0.13	S	S	S	-	Japheth <i>et al.</i> $(2015)^{[25]}$
	Karan fries (4)	10.28 ± 0.08	S	S	S	0.42 ± 0.10	Dash <i>et al.</i> $(2016)^{[14]}$
	Jersey (7)	6.02±0.23	S	NS	S	0.63	Ratwan et al. (2017)
	Hariana (1)	0.60±0.03	NS	NS	-	0.25±0.12	Dhaka et al. (2002)
Milk yield per day	Holstein (4)	4.91	S	NS	S	0.41	Tekerli and Gundogan (2005)
of age at second	Sahiwal (1)	1.14 ± 0.02	S	NS	-	0.33 ± 0.07	Dhawan <i>et al.</i> (2015)
calving(kg/day)	Sindi×Jersev (4)	1.37 ± 0.03	ŝ	NS	-	0.26 ± 0.20	Verma <i>et al.</i> $(2016)^{[58]}$
	Jersey (4)	67.83+0.73	S	NS	S		Patond <i>et al.</i> (2014)
Persistency (days)	Red sindhi (6)	61.55 ± 2.06	NS	S	S	0.08	Sabito $at al. (2014)$
reisistency (days)		01.33 ± 2.00	IND C	5	3	0.08 ± 0.11	Salito $et al. (2010)$
	H.F Closs	$10/.20/\pm 20.390$	5	S NC	-	0.28 ± 0.11	Sharma $et al. (2018)$
	Frieswal (1)	962.13+6.34	5	INS NG	-	$0.2/\pm0.10$	Kumar <i>et al.</i> $(2008)^{[54]}$
	Sahiwal (1)	13/1.06±15.49	S	NS	-	0.12 ± 0.06	Singh <i>et al.</i> (2008)
	Karan-Fries (1)	1006 ± 8	NS	NS	-	0.43 ± 0.13	Nehra (2011)
	Karan-Fries (1)	1023±5	S	NS	-	0.54 ± 0.17	Divya (2012)
A go at first	Frieswal (1)	1213.54±8.85	S	NS	-	0.46 ± 0.20	Chaudhari et al. (2013)
Age at first	H.F (1)	1300±5.5	-	-	-	-	Hassan and Khan (2013)
Carving (Days)	H.F (1)	1225±14	-	-	-	0.53±0.12	Ghosu et al. (2014)
	Frieswal (1)	891.6±13.5	-	-	-	-	Singh <i>et al.</i> (2014)
	Sahiwal (1)	1117.02±05.21	S	NS	-		Raja and Gandhi (2015)
	Frieswal (1)	1227 41±18 81	S	NS	-	0.16 ± 0.14	Kumar (2015) ^[33]
	Jersey (1)	1089 36+13 99	S	S	-	0.30 ± 0.19	Kumar <i>et al.</i> (2017) $[^{31}]$
	Koron Erios (1)	127 60+11 27	NS	S		0.30 ± 0.17	Sobo at al. $(2010)^{[45]}$
	Karan Erica (1)	121.09+11.27	6	5	-	0.10+0.07	Choudhari at $al (2010)^{1/2}$
	Kalall-Files (1)	131.20 ± 3.13	3	5	-	0.40 ± 0.14	Chaudhall $et al. (2013)$
	H.F (1)	2/2±1/.1	5	5	-	-	Hassan and Knan (2013)
Service period	Karan-Fries (1)	125 ± 5	8	NS	-	0.05 ± 0.13	Divya et al. (2014)
(Days)	H.F (1)	256±7.3	-	-	-	0.26 ± 0.11	Goshu <i>et al.</i> (2014)
(24)5)	Sahiwal (1)	149.63±5.25	S	NS	-	-	Raja and Gandhi (2015)
	Karan-Fries (4)	115.46 ± 2.14	S	S	S	0.18 ± 0.08	Dash <i>et al.</i> (2016) ^[14]
	Frieswal (1)	131.80±4.82	S	NS	-	0.02 ± 0.17	Kumar (2015) ^[33]
	Deoni (5)	158.78 ± 3.50	S	NS	S	-	Basak et al. (2018) ^[2]
	Hardhenu (1)	529.48±8.51	S	NS	-	0.09 ± 0.06	Singh <i>et al.</i> (2008)
	Karan-Fries (1)	423 20+13 17	NS	S	-	0.35+0.10	Saha <i>et al.</i> $(2010)^{[45]}$
	Karan-Fries (1)	438 ± 5	C 10	NS	<u> </u>	0.00 0.10	Nehra $(2010)^{-1}$
Calving interval	Karan Erica (1)	410±2	c	NC	-	- 0.07 ± 0.12	$\frac{10000}{1000} (2012)$
(Days)	Karan-rfiles (1)	410 ± 3	3	CV1	-	0.07 ± 0.13	$\frac{\text{Divya}(2012)}{\text{Choudh}_{\text{res}}} + \frac{1}{2}(2012)$
	Frieswal (1)	420.8±3.41	5	5	-	0.10 ± 0.10	Chaudhari <i>et al.</i> (2013)
	Karan-Fries (4)	403.91 ± 2.54	S	S	S	0.15±0.07	Dash <i>et al.</i> $(2016)^{[14]}$
	Deoni (5)	445.97 ± 3.67	NS	NS	S	-	Basak <i>et al.</i> (2018) ^[2]
Dry period	Zebu x Friesian (6)	84.20±8.50	NS	NS	S	-	Ahmed et al. (2007)
(Dave)	Frieswal (1)	105.00+2.73	S	S	I	0.32 ± 0.012	Chaudhari et al. (2013)

H.F Cross	318±21.4	S	S	-	-	Hassan and Khan (2013)
Deoni (1)	211.93±26.23	S	NS	-	-	Bhutkar et al. (2014)
Sahiwal (1)	196.69±2.63	S	NS	-	0.26 ± 0.06	Dhawan <i>et al.</i> (2015)
Frieswal (1)	102.46±4.88	S	NS	-	0.38 ± 0.23	Kumar (2015) ^[33]
Sahiwal (1)	163.75±6.77	S	S	-	-	Raja and Gandhi (2015)
Gir (1)	177.29±10.59	NS	NS	-	0.42 ± 0.23	Sawant et al. (2016)
Murrah	110.9±61.4	-	-	NS	-	Poudal et al. (2017)

Table 2: Estimates of genetic c	correlation (rg) and phenotypic	correlations (rp) among variou	as production performance traits
---------------------------------	---------------------------------	--------------------------------	----------------------------------

T	rait	rg	rp	References
LMY	LMY-305	0.93±0.95	>1	Lakshmi et al. (2009) ^[34]
LMY	LMY-305	1.00	0.90**	Singh <i>et al.</i> (2011)
LMY	LL	0 87+0 46	0 73**+0 01	Kumar (2000) ^[30]
LMY	II	0.66+0.66	$0.79^{**} + 0.15$	I = 120000 I = 120000 [34]
LIVII	DV	0.00 ± 0.00	0.79 ± 0.13	Lakshill et al. $(2009)^{1/3}$
	F I DV	0.03±-0.02	0.23 ± 0.28	Detendend Dheite (2009)
	PY	0.939	0.430**	Patond and Bhoite (2014)
LMY	PY	0.70±0.04	0.85±0.28	Verma <i>et al</i> $(2016)^{[36]}$
LMY	AMY	0.94±0.03	$0.83^{**\pm0.02}$	Dash (2014) ^[13]
LMY	AMY	.340±.158	0.58**±0.03	Dhawan <i>et al.</i> (2015)
LMY	MCI	0.97±0.02	0.88**±0.01	Dash (2014) ^[13]
LMY	MCI	0.759±0.084	0.73**±.024	Dhawan <i>et al.</i> (2015)
LMY	MSC	0.70±0.09	0.84**±0.02	Dhawan <i>et al.</i> (2015)
LMY	MSC	0 92±0 02	0.65**±0.32	Verma <i>et al</i> $(2016)^{[58]}$
LMY	Persistency	0.56 ± 0.39	0.38 ± 0.33	Seangiun <i>et al.</i> (2009) Sahiwal cross
LMY	Persistency	0.50 ± 0.57	0.50 ± 0.55	Sahito <i>et al.</i> (2006) Builtware closs
I MV 205	III	0.010	0.45**	Since $et al. (2010)$ Red Sindin
LMV 205		0.01	0.45*	$\frac{\text{Single et al. (2011)}}{\text{Desh}(2014)}$
LIVEY - 303	LL DV	$0.78^{++}\pm 0.12$	$0.44^{++}\pm 0.03$	$\frac{1}{1} \frac{1}{1} \frac{1}$
LMY-305	PY	0.03±-0.02	0.26 ± 0.28	Laksnmi et al. $(2009)^{134}$
LMY-305	PY	0.863	0.288**	Patond and Bhoite (2014) Gir
LMY-305	AMY	0.97±0.01	0.94**±0.01	Dash (2014) ^[13]
LMY-305	MCI	0.99±0.01	0.95**±0.01	Dash (2014) ^[13]
LMY-305	Persistency	0.89	0.25	Boujenane and Hilal (2012) H.F
LL	PY	0.01 ± -0.01	0.15 ± 0.40	Lakshmi et al. (2009) ^[34]
LL	PY	-0.693	-0.101*	Patond and Bhoite (2014)
LL	AMY	0.61±0.16	0.19**±0.03	Dash (2014) ^[13]
LL	MCI	0.73±0.13	0 35**±0 03	Dash (2014) ^[13]
II	MSC	0.50+0.05	0.40+0.12	Verma <i>et al</i> (2016) [58]
LL	DEDS	0.50±0.05	0.40±0.12	Sobito at al. (2016) Pod Sindhi
DV	A MV	0.005	-	Vormo at al (2016) [58]
F I DV	ANI I MCI	0.74 ± 0.03	0.31 ± 0.20	
PY	MCI	$0.7/\pm0.03$	0.60±0.19	Verma et al (2016) ^[56]
PY	MSC	0.69±0.04	0.62±0.26	Verma <i>et al</i> $(2016)^{[36]}$
PY	PERS.	0.56 ± 0.39	0.38 ± 0.33	Seangjun <i>et al.</i> (2009)
AMY	MCI	0.98±0.01	0.94**±0.01	Dash (2014) ^[13]
AMY	MCI	0.727±0.085	0.79±0.02	Dhawan <i>et al.</i> (2015)
AMY	MSC	0.780 ± 0.273	0.414 ± 0.047	Dhaka <i>et al</i> (2002)
AMY	MSC	0.718 ± 0.503	0.673 ±0.043	Dhaka <i>et al.</i> (2009) Tharparkar
AMY	MSC	0.429±0.149	0.489±0.031	Dhawan <i>et al.</i> (2015)
MCI	MSC	0.963 ± 0.055	0.808 ± 0.026	Dhaka et al (2002) Hariana cattle
MCI	MSC	>1.00	0.673 ± 0.043	Dhaka <i>et al.</i> (2009) Tharparkar cattle
MCI	MSC	0.656+0.112	0.673 ± 0.013	Dhawan at al. (2015)
MCI	Dereistener	0.000±0.112	0.024±0.027	Dhaka at al. (2013)
MSC	Dergisterier	-	0.54	Dhaka et al. (1997) Muttall Dhaka et al. (1997) Muserah
MSC	reisistency	-	0.5/	Malaharing (2005) E
LMY	AFC	0.26 ± 0.23	-0.05 ± 0.02	Muknerjee (2005) Frieswal
LMY-305	AFC	-0.23 ± 0.32	$0.04 \pm 0.04^{**}$	Divya (2012)
LMY-305	AFC	0.64±0.16	0.57**	Dash (2014) ^[13]
LMY-305	AFC	-0.49	-0.25**	Cayo et al. (2018) Girolando cattle
LL	AFC	0.75 ± 0.23	0.22 ± 0.23	Dangar and Vataliya (2015) Gir
LL	AFC	-0.15 ± 0.30	0.06±0.09	Manjeet (2015)
PY	AFC	0.07 ± 0.20	-0.07 ± 0.20	Dangar and Vataliya (2015) Gir
AMY	AFC	0.05±0.06	-0.29±0.28	Verma et al. (2016) ^[58]
MCI	AFC	0.17±0.06	-0.03±0.28	Verma et al. (2016) ^[58]
MSC	AFC	-0.21±0.06	-0.35±0.29	Verma <i>et al.</i> $(2016)^{[58]}$
LMY	SP	0.12+0.11	0.33 ± 0.03	Chander (2002)
LMV	SP	0.12 = 0.11	0.22 ± 0.004	Kadarmideen et al. (2003)
IMV	SD	0.270 ± 0.212 0.300 ± 0.070	0.22 - 0.004	$\frac{1}{2003}$
LIVI I	or CD	0.370 ± 0.070	-	Дик ег ш. (2012) п.г Divisio (2012)
LIVEY - 305	51	$-0.1/\pm 0.33$	0.12 ± 0.04	Divya (2012)
LMY-305	SP	0.66±0.15	0.24**±0.03	Dasn 2014 [13]
LL	SP	-0.32±0.195	-0.04±0.105	Ulutaş and Sezer (2009) Simmental Cattle

LL	SP	0.98±0.01	0.97**±0.01	Dash 2014 ^[13]
PY	SP	0.23±0.I	0.22±0.19	Dubey and Singh (2005)
AMY	SP	-0.15±0.06	-0.02±0.33	Verma et al. (2016) ^[58]
MCI	SP	-0.19±0.06	-0.21±0.34	Verma et al. (2016) ^[58]
MSC	SP	0.20±0.06	0.09±0.32	Verma et al. (2016) ^[58]
LMY	CI	0.07±0.40	0.42 ± 0.04	Chander (2002) Sahiwal
LMY	CI	0.400 ± 0.094	0.23 ± 0.005	Kadarmideen et al. (2003)
LMY	CI	-	0.090 ± 0.400	Nehra (2011) ^[38]
LMY	CI	0.77±0.12	0.50**±0.03	Dash 2014, Karanfries ^[13]
LMY-305	CI	-0.24 ± 0.33	$0.12^{**} \pm 0.04$	Divya (2012)
LMY-305	CI	0.71±0.16	0.26**±0.03	Dash (2014) Frieswal
LMY-305	CI	-0.54±0.37	0.14**±0.03	Cayo et al. (2018) Girolando cattle
LL	CI	0.89±0.076	0.78**±0.084	Ulutaş and Sezer (2009) Simmental Cattle
LL	CI	0.81±0.08	0.74**±0.02	Dash (2014) ^[13]
LL	CI	0.81±0.06	0.55	Birhanu et al. (2015) Ethopian boran cattle
PY	CI	0.39±0.IS	0.75±0.10	Dubey and Singh (2005)
AMY	CI	0.16±0.06	-0.08±0.32	Verma et al. (2016) ^[58]
MCI	CI	-0.21±0.06	-0.31±0.33	Verma et al. (2016) ^[58]
MSC	CI	0.18±0.06	-0.02±0.31	Verma et al. (2016) ^[58]
LMY	DP	-0.404	-	Deb et al. (2008)
LMY-305	DP	-0.47±0.234	-0.07±0.065	Ulutaş and Sezer (2009) Simmental Cattle
LMY-305	DP	-0.62 ± 0.23	$-0.40^{**}\pm 0.02$	Cayo et al. (2018) Girolando cattle
LL	DP	-0.580	-	Deb et al. (2008)
PY	DP	-0.14±0.06	-0.17±0.19	Verma et al. (2016) ^[58]
AMY	DP	0.39±0.05	-0.30±0.39	Verma et al. (2016) ^[58]
MCI	DP	-0.480	-	Deb et al. (2008)
MSC	DP	-0.32±0.05	-0.14±0.39	Verma et al. (2016) ^[58]
AFC	SP	-0.13±0.33	0.03±0.09	Manjeet (2015)
AFC	CI	-0.29±0.49	-0.08±0.09	Manjeet (2015)
AFC	DP	$0.06 \pm 0.20^{\rm NS}$	0.04 ± 0.20	Dangar and Vataliya (2015) Gir
SP	CI	0.99±0.002	0.99 ± 0.002	Ghiasi et al. (2011) HF
SP	DP	0.51±0.243	-0.04±0.105	Ulutaş and Sezer (2009)
DP	CI	0.356	-	Deb et al. (2008)
DP	CI	0.26±0.62	0.54**±0.02	Cayo et al. (2018) Girolando cattle
*Significant (P<0.05) **Significant (P<0.5)				

**Significant (P<0.5)

Genetic improvement through selection in a breeding program depends on the accuracy of identifying genetically superior animals. Selection of dairy animals is generally based on the records of performance traits. As per the literature, genetic and non-genetic factors had significant influence on the performance traits in crossbred cattle. Therefore, adjustment of effect of non-genetic factors becomes essential for accurate and unbiased estimates of genetic parameters. Heritability estimates indicated that individual and progeny testing could be a tool for bringing out desirable changes in production traits, whereas improvement in reproduction traits can be done through better managemental practices. Critical appraisal of heritability estimates, genetic and phenotypic correlations between production performance traits, it may be inferred that selection based on milk yield per day of age at second calving that had high estimates of heritability (0.50) and appreciably high genetic and phenotypic correlations with production performance traits, would not only improve production performance but also take care of reproductive performance. Therefore, selection based on MSC would result in improvement in desirable direction through positive correlated response in all the traits under study.

4. References

- 1. Ahmed MKA, Teirab AB, Musa LMA, Peters KJ. Milk production and reproduction traits of different grades of Zebu x Friesian crossbreds under semi-arid conditions. Arch. Tierz. Dummerstorf. 2007; 50:240-249.
- 2. Basak S, Das ND. Effect of parity, period and season of calving on production and reproduction traits on Deoni

Cattle. J Anim. Health Prod. 2018; 6:1-4.

- Basic Animal Husbandry Statistics. Basic animal 3. husbandry statistics, Department of Animal Husbandry, Dairying and Fisheries, Ministry of Agriculture. Government of India. Krishi Bhawan, New Delhi, 2016-2017.
- 4. Bhutkar SS, Thombre BM, Bainwad DV. Effect of nongenetic factors on production traits in Deoni cows. J of Agri. and Vety. Sci. 2014; 7:09-14.
- Birhanu T, Kefelegn M, Kebede K, Tadesse M. 5. Heritability, genetic and phenotypic correlations of milk production and reproduction traits of Ethiopian Boran cattle with different levels of Holstein Friesian inheritance. Journal of Reproduction and Infertility. 2015; 6:79-83.
- 6. Boujenane I, Hilal B. Genetic and non-genetic effects for lactation curve traits in Holstein-Friesian cows. Archiv Tierzucht. 2012; 55:450-457.
- Cayo AWC, Lopes PS, Cobuci JA, Martins, Silva 7. MMVJ. Genetic parameters of milk production and reproduction traits of Girolando cattle in Brazil. Italian J of Ani. Sci. 2018; 17:22-30.
- 8. Chaudhari M, Kumar R, Khana AS, Dalal DS. Genetic studies on production traits in crossbred cattle. Ind. J Vet. Sci. 2013; 1:2.
- 9. DAHD-GOI. Department of Animal Husbandry, Dairying and Fisheries, Ministry of Agriculture Government of India. Krishi bhawan, New Delhi, 2012.
- 10. Dandapat A, Banerjee D, Chakraborty D. Genetic studies on various production and reproduction traits of Sahiwal

and crossbred cattle (HF \times Jersey \times Sahiwal) of an organised farm. Veterinary World. 2010; 3:167-168.

- 11. Dangar N, Vataliya P. Genetic and environmental correlation of age at first calving with various production traits in Gir Cattle. International Journal of Livestock Research, 2015. SSN 2277-1964 online 4: 29-33.
- Das D, Goswami RN, Deka D. Genetic and non-genetic factors affecting the lactation milk yield and lactation length of Jersey and Red Dane cattle. Indian Journal of Animal Health. 2002; 41:137-140.
- Dash SK, Gupta AK, Singh A, Chakravarty AK, Madhusoodanan M, Valsalan J, *et al.* Evaluation of efficiency of sire model and animal model in Holstein Friesian crossbred cattle considering first lactation production and fertility traits. Vet. World. 2014; 7:933-937.
- 14. Dash SK, Gupta AK, Singh A, Chakravarty AK, Singh M, Kumar V. Performance appraisal and genetic parameter estimation of all lactation traits in Karan Fries cattle. Indian J Anim. Res. 2016; 52:7-12.
- Deb GK, Mufti MM, Mostari MP, Huque KS. Genetic evaluation of Bangladesh livestock research institute cattle breed-1: heritability and genetic correlation. Bang. J Anim. Sci. 2008; 37:25–33.
- Dhaka SS, Chaudhary SR, Pander BL, Yadav AS, Singh S. Genetic studies on production efficiency traits in Hariana cattle. Asian aus. J Anim. sci. 2002; 15:466-469.
- 17. Dhaka SS, Chaudhary SR, Pander BL, Singh S. Genetic parameters of production efficiency traits in Tharparkar cattle. J Livestock Biodiversity. 2009; 1:81-83.
- Dhawan S, Yadav AS, Dhaka SS, Chakraborty D. Genetic studies on production and production efficiency Traits in Sahiwal cattle. Indian Vet. J. 2015; 92:35–38.
- 19. Divya P. Single versus multi-trait models for genetic evaluation of fertility traits in Karan Fries cattle. MVSc. Thesis, NDRI (Deemed University), Karnal, India, 2012.
- Divya P, Singh A, Gandhi RS, Singh RK. Estimation of breeding values of first lactation 305-day milk yield from single and multi-trait animal models in Karan Fries cattle, 2014.
- 21. Hamdi NM, Mahdi B, Brar SK. Effects of environmental factors on milk yield, lactation length and dry period in Tunisian Holstein cows, 2012. https://www.re searchgate.net/ publication/231186026.
- 22. Hassan F, Khan MS. Performance of crossbred dairy cattle at military dairy farms in Pakistan. J Anim. Plant Sci. 2013; 23:705-714.
- Himanshu P. Genetic evaluation of fertility and production efficiency traits in Murrah buffalo. M.V.S.C. Thesis, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 2016.
- 24. Jadhav SS, Deshmukh AR, Deokar DK. Effect of nongenetic factors on production traits of Girhalf breeds. The Asian Journal of Animal Sci. 2010; 5:23-24.
- 25. Japheth PK, Mehla RK, Bhat ISA. Effect of non-genetic factors on various economic traits in Karan Fries crossbred cattle Ind. J Dairy Sci. 2015; 68:(2).
- Kadarmideen HN, Wegmann, S. Genetic parameters for body condition score and its relationship with type and production traits in Swiss Holsteins. J Dairy Sci. 2003; 86:3685-93.
- 27. Katok N, Yanar M. Milk traits and estimation of genetic, phenotypic and environmental trends for milk and milk fat yields in Holstein Friesian cows. International J

Agriculture & Biology. 2012; 2:311-314.

- Kharat AS, Kuralkar SV, Ali SZ. Genetic studies on first lactation and lifetime traits in Holstein Friesian crossbred cows. Ind. J Anim. Res. 2008; 42:261-263.
- 29. Kokati P, Panchal BD, Patel AC, Bahuguna PK, Joshi RS, Rank DN. Genetic parameters of production and reproduction traits and factors affecting it in Frieswal Cattle. International Journal of Livestock Research, 2017, 7: DOI. 10.5455/ijlr.20170513100842.
- Kumar A. Genetic studies on first lactation traits in Murrah buffaloes. MV Sc. Thesis, CCS. Haryana Agric. Univ., Hisar, India, 2000.
- 31. Kumar A, Mandal A, Gupta AK, Kumar N. Genetic evaluation of reproductive traits in Jersey crossbred heifersat an organized farm of eastern India. Indian J of Ani. Res. 2017; 51:619-624.
- 32. Kumar N, Eshetie A, Tesfaye A. Productive performance of Indigenous and HF Crossbred in Gondar, Ethiopia. Vet World. 2014; 7:177-181.
- 33. Kumar P. Genetic evaluation of Frieswal sires for test day milk records and first lactation traits. MVSc. Thesis, Lala Lajpat Rai University of veterinary and animal Sciences, Hisar, Haryana, India, 2015.
- 34. Lakshmi SB, Gupta R, Gnana Prakesh B, Sudhakar K, Sharma Lt. Col. Genetic analysis of the production performance of Frieswal cattle. Tamil Nadu J Vet. And Anim. Sci. 2009; 6:215-222.
- 35. Manjeet. Genetic Group Differences and Relationship among antibody titers against FMD Virus and Economic Traits in Cattle. MVSc. Thesis, Lala Lajpat Rai University of veterinary and animal Sciences, Hisar, Haryana, India, 2015.
- Mukherjee S. Genetic evaluation of Frieswal cattle. Ph.D. Thesis, National Dairy Research Institute (Deemed University) Karnal, (India), 2005.
- Narwaria US, Mehla RS, Verma KK, Lathwal SS, Yadav R, Verma AK. Study of short lactation in Sahiwal cattle at organized farm. Veterinary World. 2015; 8:690-694.
- Nehra M. Genetic analysis of performance trends in Karan-Fries cattle. MVSc. Thesis. NDRI (Deemed University), Karnal, India, 2011.
- 39. Patond MN, Bhoite UV. Genetic and phenotypic correlation among milk production traits of Gir triple cross cows. Research Journal of Animal Husbandry and Dairy Sci. 2014; 5:39-41.
- Poudel D, Bhattarai N, Kaphle K, Sapkota S, Kandel M. Effect of parity on lactational efficiency of Murrah crossbred buffaloes (*Bubalus bubalis* L.) in Central Nepal. International Journal of Agriculture and Forestry. 2017; 7:140-144.
- 41. Pundir RK, Sindh K. Estimates of genetic parameters and trends of various performances traits of Red Sindhi cattle using single trait animal model. Indian J Ani. Sci. 2007; 77:1002-1006.
- 42. Raja TV, Gandhi RS. Factors influencing productive and reproductive performance of Sahiwal cattle maintined at organized farm conditions. Ind. J Anim. Sci. 2015; 85:628-633.
- Ratwan P, Mandal A, Kumar M, Chakravarty AK. Genetic analysis of milk production efficiency traits in Jersey crossbred cattle. Indian J Anim. Res. 2017; 51:644-647.
- 44. Rehman SU, Ahmad M, Shafiq M. Comparative performance of Sahiwal cows at LES Bahadurnagar Vs

Patadar's herd. Pakistan Vet. J. 2006; 26:179-183.

- 45. Saha S, Joshi BK, Singh A. Generation-wise genetic evaluation of various first lactation traits and herd life in Karan Fries cattle. Ind. J Ani. Sci. 2010; 80:451-456.
- Sahito AI, Sahito JGM, Wazir IUK, Lochi GM. Analysis of the persistency of lactation in Red Sindhi cattle. Sci. Int. (Lahore). 2016; 28:2607-2610.
- Samarai FRA, Abdulrahman1 YK, Mohammed FA, Al-Zaidi FH, Al-Anbari NN. Comparison of several methods of sires evaluation for total milk yield in a herd of Holstein cows in Yemen. Open Veterinary J. 2015; 5:11-17.
- Sawant P, Singh B, Sawant D, Yadav SP, Bhinchhar BK. Effect of genetic and non-genetic factors on first lactation traits in Gir cows. Indian J Anim. Res. 2016; 50:872-876.
- 49. Seangjun A, Koonawootrittriron S, Elzo MA. Characterization of lactation patterns and milk yield in a multibreed dairy cattle population in the central Thailand. Natural Sci. 2009; 43:74-82.
- 50. Sharma N, Narang R, Kashyap N, Kumari S, Kaur S, Ratwan P. Genetic analysis of persistency in HF crossbreed cattle at an organised farm of northern India. Topical animal health and production, 2018, 1-7.
- 51. Singh MK, Gurnani M Genetic analysis of production and reproduction traits in Karan-Fries and Karan-Swiss cattle. Indian J. Anim. Sci. 2004; 74:225-228.
- Singh RR, Dutt T, Kumar A, Tomar AKS, Singh M. Comparison of sire evaluation method for milk production in Vindavani cattle. Ind. J Anim. Sci. 2011; 80:448-450.
- 53. Singh S, Das AK, Chakraborty D, Taggar RK, Kumar N, Gupta P, *et al.* Studies on genetic and non-genetic factors affecting performance traits of Frieswal cows. Ind. J Anim. Res. 2014; 48:537-540.
- Singh VK, Singh CV, Kumar D, Sharma RJ. Genetic parameter for first lactation and life time performance trait in crossbred cattle. Ind. J Anim. Sci. 2008; 78:497-501.
- 55. Tekerli M, Gundogan M Effects of certain factors on productive and reproductive efficiency traits and phenotypic relationships among these traits and repeatabilities in West Anatolian Holstein. Turkey J Vet. Anim. Sci. 2005; 29:17-22.
- Ulutaş Z, Sezer M. Genetic study of milk production and reproduction traits of local born Simmental cattle in Turkey. GOÜ. Ziraat Fakültesi Dergisi. 2009; 26:53-59.
- 57. Verma N, Thakur YP. Effect of genetic and non-genetic factors on production efficiency traits of Red Sindhi x Jersey crossbred cows maintained under sub-temperate Indian conditions. Livestock Research International. 2013; 1:58-60.
- Verma R, Yadav AS, Dhaka AS. Genetic studies on production and production efficiency traits in Hardhenu crossbred cattle. Haryana Vet. 2016; 55:166-169.
- Wondifraw Z, Thombre BM, Bainwad DV. Effect of non-genetic factors on milk production of Holstein Friesian Ũ Deoni crossbred cows. African Journal of Dairy Farming and Milk Production. 2013; 1:079-084.
- 60. Zink V, Lassen J, Štipkova M. Genetic parameters for female fertility and milk production traits in first-parity Czech Holstein cows, 2012.