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Abstract 
Tissue engineering is an amalgam of principles and techniques of various disciplines which aims at 
assembling biological substitutes to aid either in growth of new tissues or to restore the structure and 
function of affected tissue. It involves construction of a three dimensional matrix which mimics the 
natural tissue in all aspects viz, functionally, structurally and mechanically by use of four key materials 
(i.e, scaffold, growth factor, extracellular matrix and cells). Although various types of cells are used in 
tissue engineering but autologous cells (stem cells) are preferred the most. Tissue engineering is an 
expanding field where in efforts are being made to include all tissue and organs of humans and animal 
body. The added advantage of tissue engineering is that it probably has the ability to correct various 
incurable defects as well as replacement of any damaged structure. Therefore it can be considered as a 
viable therapeutic option for replacement and regeneration of tissue. Although, the results are far more 
promising but it demands a lot of effort in future to be a successful tool in animal medicine  
 
Keywords: Tissue engineering, stem cells, veterinary medicine. 
 
Introduction 
Tissue engineering is an interdisciplinary field that applies the principles and methods of 
bioengineering, material science, and life sciences towards the assembly of biologic substitutes 
that mimic the natural extracellular matrix to help guide the growth of new functional tissue in 
vitro or in vivo to restore, maintain and improve tissue functions following damage either by 
disease or traumatic processes (Knight, 2004) [20]. In 1990s, the term regenerative medicine 
was used interchangeably with tissue engineering. The general principles of tissue engineering 
involve combining living cells with a natural/synthetic support or scaffold to build a three 
dimensional living construct that is functionally, structurally and mechanically equal to or 
better than the tissue that is to be replaced (Stock, 2001) [35]. The development of such a 
construct involves successful interaction between four key materials i.e, scaffold, growth 
factors, extracellular matrix and cells (Fuchs, 2001, Shieh, 2005 and Naughton, 2002) [15, 30, 24]. 
 
Scaffolds 
Scaffold materials are three-dimensional tissue structures that guide the organization, growth 
and differentiation of cells. Scaffolds must be biocompatible and designed to meet both 
nutritional and biological needs for the specific cell population (Vats, 2003) [37]. The main 
properties of biocompatible scaffolds (synthetic or natural) include optimal fluid transport, 
delivery of bioactive molecules, material degradation, cell-recognizable surface chemistries, 
mechanical integrity and the ability to induce signal transduction (Shin, 2003)[31]. Natural 
biomaterials (Alginate, cellulose, chitosan, collagen, fibrinogen, hyaluronic acid, silk fibroin, 
glycosaminoglycans (GAGs), hydroxyapatite (HA) etc.,) used for stem cell cultivation have an 
advantage of being bioactive, biocompatible with similar mechanical properties as native 
tissue (Chung, 2008) [9].  
 
Growth factors and Extracellular matrix 
Growth factors are soluble peptides capable of binding cellular receptors and producing either 
a permissive or preventive cellular response toward differentiation and/or proliferation of 
tissue (Whitaker, 2001) [41]. Extra cellular matrix (ECM) must be capable of providing the 
optimal conditions for cell adhesion, growth and differentiation within the construct by 
creating a system capable of controlling environmental factors such as pH, temperature, 
oxygen tension and mechanical forces (Naughton, 2002) [24].  
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These conditions are determined by particular cell lines and 
the properties of the scaffold (Naughton, 2002) [24].  
 
Cells 
Finally, the development of a viable construct involves a 
suitable supply of cells that are ideally non immunogenic, 
highly proliferative, easy to harvest and have the ability to 
differentiate into a variety of cell types with specialized 
functions (Koh, 2004)[21]. Stem cells have the potential to 
divide and differentiate into various specialized cell types and 
can self-renew to produce more stem cells (Crovace, 2010) 
[10]. Stem cells can be divided based on their self-renewal and 
potency (Crovace, 2010) [10]. Self-renewal of stem cells is the 
ability to go through numerous cycles of cell division while 
maintaining the undifferentiated state while other property of 
stem cells is potency which is the capacity to differentiate into 
specialized cell types (Nourissat, 2010) [25]. Based on the 
potency, stem cells can be divided into totipotent stem cells 
(Chen, 2012) [6] which can differentiate into embryonic and 
extraembryonic cell types (Nourissat, 2010) [25] and have the 
ability to construct a complete, viable organism (Guest, 2010) 
[16]. Potency of these cells is highest among other stem cell 
types (Nourissat, 2010) [25]. The second type is the pluripotent 
stem cells (Okamoto, 2010) [26]. These cells are the progenies 
of totipotent cells and can differentiate into almost all cells 
(e.g, cells derived from any of the three germ layers) (Ai, 
2012) [1]. The third type is the multipotent stem cells (Chen, 
2012) [6] which can differentiate into a number of cells, but 
only those of a closely related family of cells (Zscharnack, 
2010) [48]. The potency of these cells is much lower than the 
totipotent stem cells and lower than pluripotent stem cells. 
The fourth type is the oligopotent stem cells. These cells can 
differentiate into only a few cells, such as lymphoid or 
myeloid stem cells (Yao, 2012) [45]

. Finally, the fifth group is 
the unipotent cells (Ter, 2012) [36] and the potency of these 
cells is extremely low so they can produce only one cell type, 
their own. They have the property of self-renewal, which 
distinguishes them from non-stem cells (Ter, 2012) [36]. 
Therefore, all types of stem cells have the ability of self-
renewal but their potency is different and depends on the 
source that they have arisen from (Zscharnack, 2010) [48]. 
Current approaches to tissue engineering can be stratified into 
substitutive, histioconductive, and histioinductive (Knight, 
2004) [20]. Substitutive approaches (ex vivo) are essentially 
whole organ replacement, whereas histioconductive 
approaches (ex vivo) involve the replacement of missing or 
damaged parts of an organ tissue with ex-vivo constructs. In 
contrast, histioinductive approaches facilitate self-repair and 
may involve gene therapy using DNA delivery via plasmid 
vectors or growth factors. 
 
Techniques of Tissue engineering 
When cells are used for tissue engineering, a small piece of 
donor tissue is dissociated into individual cells. In case of in 
vivo tissue engineering, patient acts as a bioreactor for cell 
differentiation and in case of in vitro tissue engineering, 
bioreactor is used for cell differentiation. These cells are 
either implanted directly into the host (invivo) or are 
expanded in culture (invitro), attached to a support matrix, 
and then reimplanted into the host after expansion. The source 
of donor tissue can be heterologous, allogeneic (same species, 
different individual), or autologous. Ideally, both structural 
and functional tissue replacements will occur with minimal 
complications. The most preferred cells to use are autologous 

cells, where a biopsy of tissue is obtained from the host, the 
cells are dissociated and expanded in culture, and the 
expanded cells are implanted into the same host. The use of 
autologous cells avoids rejection, and thus the deleterious side 
effects of immunosuppressive medications can be avoided. 
 
Bioreactors 
A bioreactor is a device that attempts to simulate a 
physiological environment in order to promote cell or tissue 
growth in vitro. It is used to aid in the in vitro development of 
new tissue by providing a better physiological environment 
including temperature and oxygen or carbon dioxide 
concentration and extend to all kinds of biological, chemical 
or mechanical stimuli (Plunkett, 2011)[28]. 
The bioreactors used for 3D cell cultures are small plastic 
cylindrical chambers. l with regulated internal humidity and 
moisture. This humidity is important to achieve maximum 
cell growth and function. The bioreactor 
uses bioactive synthetic materials such as polyethylene 
terephthalate membranes to surround the spheroid cells in an 
environment that maintains high levels of nutrients. The 
bioreactor chamber is part of a larger device that rotates to 
ensure equal cell growth in each direction across three 
dimensions. 
 
Applications of tissue engineering in veterinary medicine 
Role of tissue engineering in tendon defects 
Tissue engineering has been introduced to improve the 
outcome of incorporation of the tissue engineered grafts and 
improve the healing processes of injured tendons. A major 
advancement in tendon tissue engineering is related to the 
scaffolds. The first step in tendon regenerative medicine is to 
design a suitable environment for cell migration, proliferation, 
remodelling and maturation (Moshiri, 2013)[22]. Therefore, 
there are several factors that have an impact on the 
effectiveness of the scaffold including the basic material of 
the scaffold, architecture of the scaffold, diameter and 
orientation of the fibres, their biological characteristics and 
the amount of free spaces and pore size (Shearn, 2011 and 
Whitlock, 2012) [29,42]. Other issues that should be considered 
in manufacturing a scaffold (Chen, 2009) [7] is a suitable 
scaffold for tendon tissue engineering i.e, it should be 
cytocompatible in vitro and biocompatible and biodegradable 
in vivo (Shearn, 2011)[29].Unfortunately, most of the 
exogenous based biomaterials for tendon repair have serious 
limitations, such as lower capacity for inducing cell 
proliferation and differentiation (tenoinductivity), poor 
biocompatibility and remodelling potential (tenoconductivity) 
(Whitlock, 2012) [42].Basic material of the scaffold can 
generally be divided into three major groups including 
biological (natural), synthetic and hybrid materials (Chen, 
2009) [7].Biological materials such as collagen, elastin, 
gelatin, chitosan, albumin, alginate, fibrin and chondroitin 
sulphate have been shown to be effective in tendon healing 
(Whitlock, 2007) [43]. Their toxicity is low and has some 
beneficial biological role after implantation in the injured area 
(Wotton, 2009) [44]. Mature tendons are composed of more 
than 90% type 1 collagen. Elastin is also present in tendons in 
a much less proportion (about 1%) and its major application 
in tissue engineering is to produce vascular scaffolds (Chen, 
2009) [7]. Chitosan is a natural polysaccharide obtained from 
insects. There are also some nonbiodegradable biological 
materials such as silk and carbon fibres (Naughton, 2002) [24]. 
The usage of carbon fibre did not continue because of its high 
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toxic effect and serious inflammatory reactions. However, 
investigations into silk are still in progress, as that have low 
value in translational medicine (Chen, 2009) [7]. Synthetic 
materials such polycaprolactone (absorbable), polydioxanone 
(absorbable), polygalactin 910 (absorbable) and nylon (non-
absorbable) are other options with invaluable results (Hakimi, 
2012) [17]. Several types of scaffolds with different 
technologies have been introduced. Tendon and ligament 
injuries are a frequently occurring problem not only in human 
but also in equine athletes. Successful therapy is challenging 
because of high re-injury rates following conventional 
treatment regimes and poor regeneration capacities of tendon 
tissue (Dowling, 2000 and Chong, 2009)[12,8].Treatment of 
tendon injuries is challenging with major limitations of 
peritendinous adhesions because of proliferation of fibroblasts 
in a haphazard fashion (Moshiri, 2011) [23].With the result, 
migration of fibroblast in the defect area is reduced followed 
by reduction in the amount of collagen production. Continuity 
of the defect area in such a tendon injury may not be 
established (Chalmers, 2000) [5]. Tendon transplantation is the 
only available option when the injured tendons are having-
large tendon deficits (Zhang, 2012) [47]. Mesenchymal stem 
cells (MSCs) represent an attractive tool for tendon tissue 
repair in equines and bone marrow mesenchymal cells possess 
the best capability of differentiating into tenocytes (Stefania, 
2009) [34]. 

 
Role of tissue engineering in bone regeneration and 
healing 
Bone healing has its own limitations and complications. In 
large massive bone defects, such as osteosarcoma, gunshot 
fractures, severe trauma, burn, etc, proper graft both in size 
and quality is needed for bone transplantation; however it 
may not be available for such cases. Therefore, there is a need 
to accelerate bone healing by increasing the amount of the 
newly regenerated callus in the defect area. Stem cells may 
have a role to aid bone formation in this regard. 
Musculoskeletal disorders represent a major part of all cases, 
especially in horses and dogs which represent a high 
proportion of the orthopaedic case load in veterinary clinical 
practice and prognosis for patients suffering from 
musculoskeletal disorders such as tendon or joint injuries is 
always poor, therefore it is not surprising that they are 
currently taking a leading role in mesenchymal stromal cells 
(MSC) therapies. The focus of attention in veterinary science 
is currently drawn to mesenchymal stromal cells (MSC) and 
their potential in regenerative medicine (Walter, 2012) [40]. 
Several therapies utilizing MSC for animal patients are being 
developed and some, like the treatment of equine 
tendinopathies (Smith, 2003andSmith 2008) [33, 32] or cartilage 
degeneration in dogs (Black, 2007and 2008) [4, 3]. The stromal 
compartment of bone marrow was the first source reported to 
contain multipotent progenitor cells (Fortier, 1998) [13]. For 
this reason, bone marrow is currently the best investigated 
origin of MSC. Bone marrow collection from the sternum is 
probably favored for cell-based therapies in equine 
regenerative medicine. This is due to the reliable isolation 
success of bone marrow-derived MSC in horses following an 
easy preparation procedure and separation of MSC via plastic 
adherence and cell culture (Vidal, 2006) [38]. The major 
disadvantage of bone marrow-derived MSC is the invasive 
collection procedure associated with the risk of complications 
such as hemorrhage, infection, pneumothorax, or 
pneumopericardium(Vidal, 2007) [39].. Similar to human 

beings, various forms of joint disease occur, including 
developmental diseases (i.e. osteochondrosis), acute 
accidental injuries (i.e. focal cartilage defect) and chronic 
acquired diseases. The ultimate result is often osteoarthritis 
(OA), a joint disease characterized by a progressing loss of 
functional cartilage matrix, synovitis and variable 
subchondral bone reaction. Horses suffering from OA induced 
by experimental osteochondral fragmentation were treated 
with bone marrow-derived MSC or the stromal-vascular 
fraction from adipose tissue (Frisbie, 2009) [14]. Dogs 
suffering from elbow and hip joint OA were injected with the 
stromal-vascular cell fraction from adipose tissue and an 
improvement of clinical parameters was observed (Black, 
2007 and 2008) [4, 3]. Therefore, tissue engineering and the use 
of stem cells are important in situations where bone healing is 
delayed, where an arthrodesis needs to be supported, or in 
cases where bone loss is too important to be repaired without 
intervention (Walter, 2012)[40]. 
 
Role of tissue engineering in cartilage healing 
The incidence of cartilage injury is very high and has 
minimum healing capability like that of tendon (Davatchi, 
2011 and Kasemkijwattana, 2011) [11, 18]. It has been suggested 
that MSCs therapy can increase the rate and quality of 
cartilage regeneration both in animals and humans 
(Zscharnack, 2010) [48] Platelet rich plasma (PRP) is reported 
to promote collagen synthesis and cell proliferation as well as 
enhance cartilage repair (Moshiri, 2013) [22]. 

 
Recent advances and future prospects 
Recently, skin tissue engineering is considered to be the 
primary treatment for epidermal and dermal construct 
(Whitlock, 2012) [42]. Dermal fibroblasts are obtained from 
neonatal foreskin, expanded in vitro, seeded onto a scaffold of 
polylactic or polyglycolic acid before being cultured in a 
bioreactor system to generate a dermal layer (Kern, 2011) [19]. 

A bilaminate construct is produced by coating the dermal 
layer with multiple layers of keratinocytes (Bianco, 2001) [2]. 

Complexity and specialized conducting infrastructure of the 
heart and low proliferative potential of cardiomyocytes is a 
challenge for heart tissue engineering. Promising solution is 
embryonic stem cell lines. Engineered heart products include 
biocompatible, non-biodegradable but ineffective for 
longterm replacement. Nonetheless, the possibility of 
development of an engineered heart is exemplified by the 
successful manufacturing of tissue-engineered valves and 
myocardial infarct scar remodeling (Orlic, 2001) [27].  
Tissue engineering has the ability to repair various defects 
which are otherwise incurable and it can be used to replace 
any of the damaged structure. The results thus far are very 
promising but a lot of effort still needs to be put to make it a 
viable therapeutic option for replacement and regeneration of 
tissue or organ in animal medicine. 
 
Conclusion 
Engineered tissues have progressively expanded clinical 
applicability in the future because they represent a viable 
therapeutic option for those who require tissue replacement or 
regeneration. Efforts for tissue engineering are currently 
underway for virtually every type of tissue and organ within 
the human or animal body. Various engineered tissues are at 
different stages of development, with some already being 
used clinically, a few in preclinical trials, and some in the 
discovery stage. More recently, major advances in the areas of 
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stem cell biology, tissue engineering, and nuclear transfer 
techniques have made it possible to combine these 
technologies to create the comprehensive scientific field of 
regenerative medicine. 
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