www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating 2017: 5.03 TPI 2017; 6(10): 08-12 © 2017 TPI www.thepharmajournal.com Received: 03-08-2017 Accepted: 04-09-2017

Grinsun-Sharma

Department of Pharmaceutical Science, Pokhara University Lekhnath, Kaski, Nepal

Gopal Lamichhane Department of Pharmaceutical Science, Pokhara University, Lekhnath, Kaski, Nepal

Correspondence Gopal Lamichhane Department of Pharmaceutical Science, Pokhara University, Lekhnath, Kaski, Nepal

A review of plant based medicine in treatment of Urolithiatic disorder

Grinsun-Sharma and Gopal Lamichhane

Abstract

Medicinal plants have been known for ancient time and are well admired in globe as a potential source of curative compounds for the prevention of different diseases. Urolithiasis is precipitation of insoluble and less soluble salt such as Oxalate and Phosphate in urinary tract causing obstruction in urethra resulting renal colic and hematuria. The information on flora was collected from various Journals, websites and books which were additionally revised to ascertain use parts, studied model, ethno medicinal use and different mechanism of action. By analysing 36 articles of 27 journals this review accumulates information of list of 94 plants of 55 families covering 21 mechanism of action which can suppress urolithiasis with three studied model. Also, Conventionally, 20 parts of these plants are used by different modes like boiling, decoction, extract, paste, juice, powder and ash. In this article, an effort has been made to highlight on effective native flora which is used in cure of urolithiasis.

Keywords: Oxalate, Phosphate, Review and Urolithiasis

1. Introduction

Urolithiasis is the precipitation of insoluble and less soluble salt such as oxalate and phosphate in urinary tract, which causes obstruction of urethra resulting renal colic, hematuria, pyuria, dysuria, oliguria and hematuria. It is third most common disorder of urinary system after urinary tract infection and prostrate disease, affecting nearly 2% of world population ^[1, 2, 3]. In past years, incidence of kidney stone is increased in both male and female of industrialized country possibly due to high dietary intake of mineral and protein. The reoccurrence rate of this disease differs about 70-80% in males and 47-60% in females [4]. As it affects all age group of people, fifty to sixty is peak age for the incidence of calcium oxalate stones with a female to male to ratio of 1:2 which is due to larger muscle mass of male. Also, high presence of testosterone; a hormone with enhancing effect to stone formation, in male favours in stone formation whereas estrogen; which have high presence in women, helps in prevention of formation of kidney stone by keeping alkaline urine and increasing citrate level in urine [5, 6, 7, ^{8]}. Calcium salts are major type of covering about 75% of all calculi. It is observed as calcium oxalate (50%), calcium phosphate (5%) and mixture of both (45%)^[5]. Calcium oxalate exists in two different molecular states monohydrate and dihydrate form. Being thermodynamically stable and having greater affinity for renal tubular cell monohydrate form is observed repeatedly in stone than dehydrate ^[9]. The mechanism of kidney stone is guided by events of crystal nucleation, aggregation and growth of insoluble particle. Crystals are formed in urine due to super saturation of crystal forming compounds, presence of stimulatory and absence of inhibitory component. Prevention of urolithias is carried out by intervening symptomatically, physiologically and change in lifestyle. Increasing fluid intake, painkiller for alleviation of colic pain and administration of salt monitoring drug helps in management of stones ^[10]. These medicines are not effective in all cases and are not used due to high cost, adverse reaction and high probability of reoccurrence. Hence, medicinal plants are used conventionally for urolithiaisis due to their cost effectiveness, fewer side effects and they contains numerous phytochemicals that shows beneficial effects in urolithiasis [11].

2. Methods and result

The information on flora having antiurolithiasis activity was collected from various journal, websites and books which were additionally revised to ascertain use parts, studied model, ethno medicinal use and different mechanism which can inhibit urolithiasis. Based upon the theory that traditionally used plants can show affirmative result in screening in various *in vivo-vitro* models, the investigation has been done on 36 articles of 27 journals consisting of 94

plants belonging in 55 families. After collection of statistics the process has been choose from

generalization to specification. Table 1 contains list of plants having antiurolithiasis activity.

S. N.	Scientific name	Family	Part used	Mechanism of action	Studied model/ Mode of use
1.	Abel moschus	Malvaceae	Seeds	Diuretic, antioxidant	Animals in vivo ^[12] .
2.	Abrus precatorius	Malvaceae	Leaves	Diuretic	Aqueous extract is taken ^[4] .
3.	Achyranthus aspera	Amaranthaceae	Leaves	Diuretic, prevents renal epithelial damage	Leaves extract is taken. <i>In vitro</i> , cell culture, animals <i>in vivo</i> ^[11, 2] .
4.	Acorus calamus	Araceae	Rhizome	Diuretic, nephroprotective actions	Animals in vivo ^[13] .
5.	Actinodaphne angustifolia	Lauraceae	Leaves	Diuretic	Decoction of leaves is taken. ^[4] .
6.	Aerva javanica	Amaranthaceae	Whole Plant	Diuretic, dissolves kidney stone	Whole plant paste is taken ^[3, 14] .
7.	Aeschynomene indica	Papilionaceae	Leaves	Diuretic	Decotion of leaves is taken ^[4]
8.	Alcea rosea	Malvaceae	Roots	Diuretic, anti-inflammatory	Animal <i>in vivo</i> ^[15, 16] .
9.	Allium odorosum	Alliaceae	Leaves	Diuretic	Decotion of leaves is taken ^[4]
10.	Ananas comosus	Bromeliaceae	Ripe Fruits	Diuretic	Extract of ripe fruit is taken ^[4] .
11.	Anneslea fragrans	Theaceae	Leaves	Diuretic	Boiled in water and taken ^[4] .
12.	Asparagus racemosus	Liliaceae	Roots	Dissolve kidney stone, diuretics	Decoction of root is taken $[3, 4]$.
13.	Averrhoa carambola	Averrhoaceae	Fruits	Dissorve maney stone, ararettes	Fruit juice is taken ^[4] .
14.	Bambusa nutans	Poaceae	Shoots	Diuretic	Boiled shoot extract is taken. ^[4] .
					Decoction of bark and leaves is
15.	Bauhinia acuminata	Caesalpiniaceae	Barks,Leaves	Diuretic	taken ^[4] .
16.	Benincasa hispida	Cucurbitaceae	Fruits	Diuretic	Decoction of fruit is taken. Fruit extract mixed with jaggery is taken ^[4, 14] .
17.	Bergenia ligulata	Saxifragaceae	Rhizomes	Decreases calcium oxalate crystal	<i>In vitro</i> turbidity assay, <i>In vivo</i> animals ^[11, 17] .
18.	Biophytum sensitivum	Oxalidaceae	Whole Plant	Diuretic, antioxidant, anti- inflammatory	Animals in vivo ^[18] .
19.	Blumea balsamifera	Asteraceae	Leaves	Diuretic	Crushed leaves in water are taken [4].
20.	Bonnaya reptans	Scrophalariaceae	Whole Plant	Diuretic	Decoction is taken ^[4] .
21.	Celosia argentea	Amaranthaceae	Roots	Diuretic	Boiled extract of root is taken [4].
22.	Celtis australis	Urticaceae	Leaves	Diuretic	Boiled extract of leaves is taken [4].
23.	Celtis timorensis	Ulmaceae	Shoots	Diuretic	Boiled juice is taken ^[4] .
24.	Centella asiatica	Apiaceae	Whole Plant	Diuretic	Plant juice is taken ^[4] .
25.	Cinnamomum bejolghota	Lauraceae	Barks	Diuretic	Bark is taken ^[4] .
26.	CinnamomumGlaucescen s	Lauraceae	Barks	Diuretic	Powder of bark is taken ^[4] .
27.	Cinnamomum tamala	Lauraceae	Leaves	Diuretic	Boiled leaves extract is taken [4].
28.	Cissampelos pareira	Menispermaceae	Roots	Antioxidant, diuretic, hypocalciuric	In vivo animal model ^[1] .
29.	Cissus adnata	Vitaceae	Leaves And Roots	Diuretic, antibacterial, prevents crystal formation	Decoction of leaves and root is taken ^[4] .
30.	Cissus javana	Vitaceae	Leaves	Diuretic	Boiled extract of leaves is taken [4].
31.	Citrus latipes	Rutaceae	Fruits	Diuretic	The fruit extract is taken ^[4] .
32.	Citrus limon	Rutaceae	Fruits	Antioxidant, inhibition of crystal growth, diuretic	In vitro, in vivo animal assay ^[17, 19] .
33.	Citrus medica	Rutaceae	Whole Plant	Diuretic, hypocalciuric, hypooxalouric effect	In vivo animal assay ^[3] .
34.	Copaifera langsdorffii	Fabaceae	Leaves	Inhibit crystal formation, prevent crystal growth	In vitro, in vivo animal assay [20].
35.	Cordia grandis	Boragineae	Fruits	Diuretic	Fruits juice are taken ^[4] .
36.	Crateva magna	Capparidaceae	Roots, Stem and Barks	Diuretics, reduced serum creatinine and calcium, hypooxalourea	Animal <i>in vivo</i> ^[3, 21] .
37.	Crataeva nurvala	Capparaceae	Barks	Antibacterial, inhibit growth of stone, inhibit glycolic acid oxidase, lower intestinal Na K-ATPases.	Bark decoction is used, <i>In vivo</i> animal ^[3, 4, 11] .
38.	Cucumis trigonus	Cucurbitaceae	Fruits	Antioxidants, inhibit lipid peroxidation in liver and kidney	Animals in vivo [22].
39.	Cuminum cyminum	Umbelliferaeceae	Fruits	Prevent nucleation, diuretic, antibacterial, make urine alkaline	Decoction of fruits is taken ^[4] .
40.	Curcuma longa	Zingiberaceae	Rhizomes	Dissolve kidney stone, diuretic	Turmeric powder mixed with jaggery is taken ^[3, 14] .
41.	Cymbopogon citratus	Poaceae	Whole Plant	Diuretic	Decoction is taken ^[4] .
				Increase calcium oxalate dihydrate	Root decoction is taken. In vivo

43.	Dendrophthoe elastic	Loranthaceae	Whole Plant	Diuretic, hypocalciuric,	<i>In vivo</i> animal assay ^[25] .
	desr Desmodium			hypooxalouric	-
44.	microphyllum	Papilionaceae	Whole Plants	Diuretic Diuretic, hypocalciuric,	Decoction of the plant is taken ^[4] .
45.	Didymocarpus pedicellata	Gesneriaceae	Whole Plant	hypooxalouric effect, dissolve kidney stone	<i>In vivo</i> animal assay ^[3, 25] .
46.	Dolichos biflorus	Leguminoceae	Seeds	Dissolve kidney stone, diuretic and prevent stone deposition	<i>In vitro, in vivo</i> animal assay ^[3, 11, 17] .
47.	Duchesnea indica	Rosaceae	Whole Plant	Diuretic	Decoction of plant is taken [4].
48.	Emblica officinalis	Euphorbiaceae	Fruits	Diuretic	Juice extract is taken ^[4] .
49.	Enhydra fluctuans	Asteraceae	Shoot	Diuretic	Boiled with sugar and taken. ^[4] .
50.	Eupatorium birmanicum	Asteraceae	Leaves	Diuretic, antibacterial activity, prevent crystal formation, make urine alkaline	Decoction of the leaves is taken ^[4] .
51.	Euphorbia hirta	Euphorbiaceae	Whole Plant	Diuretic	Boiled with <i>Cuminumcyminum</i> , extract mixed with goat milk is taken ^[4, 14] .
52.	Fragaria indica	Rosaceae	Vegetative Parts	Diuretic	Boiled with sugar and taken [4].
53.	Fragaria nilgerensis	Rosaceae	Vegetative Parts	Diuretic	Boiled along with sugar candy taken ^[4] .
54.	Fructus aurantii	Cucurbitaceae	Whole Plant	Inhibit nucleation, dissolve formed stone, antioxidant, antimicrobial.	Animals in vivo, In vitro [24].
55.	Hedychium aurantiacum	Zingiberaceae	Rhizomes	Diuretic	Boiled with water and drink ^[4] .
56.	Hibiscus sabdariffa	Malvaceae	Leaves	Diuretic, antibacterial activity, prevent crystal formation, dissolve stone	Decoction of leaves is taken. <i>In</i> <i>vivo</i> animal assay ^[4, 26] .
57.	Holarrhena antidysenterica	Apocynaceae	Seeds	Antioxidant, renal epithelial protective effect, Inhibit crystal aggregation	In vitro, animals in vivo ^[27] .
58.	Hordeum vulgare	Poaceae	Seeds	Diuretic, antioxidant, nephroprotective, and lower the concentration of urinary stone- former	Animals <i>in vivo</i> ^[28] .
59.	Ichnocarpus frutescens	Apocyaneceae	Roots	Hypocalciuric, hypooxalouric, restore phosphate level and regulate endogenous oxalate synthesis	In vivo animal assay ^[2, 3, 15] .
60.	Ipomoea eriocarpa	Convolvulaceae	Leaves	Diuretic, lower urinary concentrations of stoneformer	Animals in vivo [29].
61.	Jasminum auriculatum	Oleaceae	Flowers	Regulatory action on endogenous oxalate synthesis	Animal in vivo ^[15] .
62.	Lindernia ruellioides	Linderniaceae	Whole Plant	Diuretic	Boiled along with sugar candy and drink ^[4] .
63.	Mallotus philippensis	Euphorbiaceae	Barks	Diuretic	Decoction of the bark is taken ^[4] .
64.	Mentha arvensis	Lamiaceae	Leaves	Diuretic	Crushed in water and drink ^[4] .
65.	Mimosa pudica	Mimosaceae	Roots	Diuretic	Root decoction is taken ^[4, 15] .
66.	Moringa oleifera	Moringaceae	Roots, Bark and Flower	Reduce stone formation in urine and their kidney retention, Diuretic, improve renal function	Decoction is taken. <i>In vivo</i> animal [3, 11, 14, 21, 15]
67.	Myriogyne minuta	Asteraceae	Aerial Parts	Diuretic	Extract of the plants is taken ^[4] .
68.	Nasturtium officinale	Lileaceae	Aerial Parts	Preventive effect on renal stone formation and crystal deposition	Animals in vivo [30].
69.	Nigella sativa	Ranunculaceae	Seeds	Antioxidant, anti-inflammatory, prevents crystal formation	Animals in vivo [31].
70.	Origanum vulgare	Lamiaceae	Aerial Part	Inhibit crystallization, diuretic, antioxidant, antispasmodic, epithelial cell protection	Cell culture, Animals in vivo [32].
71.	Oxalis corniculata	Oxalidaceae	Leaves	Diuretic, antibacterial activity, prevent crystal formation	Decoction of the leaves is taken [4].
72.	Pedalium murex	Pedaliaceae	Fruits	Regulatory action on endogenous oxalate synthesis, prevent renal epithelial cell damage	Fruit powder is given with sheep milk. <i>In vivo</i> animals ^[14, 33] .
	Phyllanthus niruri	Phyllanthaceae	Leaves	Antispasmodic, inhibit crystal growth	In vitro, in vivo animals [11, 17].
73.	T nyuaninus niruri				
73. 74.	Piper longum	Piperaceae	Leaves	Diuretic, antibacterial activity, prevent crystal formation, dissolve stone	Decoction of the leaf is taken ^[4] .

					taken ^[4] .
76.	Potentilla anserina	Rosaceae	Whole Plant	Diuretic	Decoction of the plant is taken ^[4] .
77.	Pratia nummularia	Companulaceae	Whole Plant	Diuretic	Boiled extract of whole plant is taken ^[4] .
78.	Raphanus sativus	Brassicaceae	Tubers	Diuretic	Ash mixed with water is given. <i>In</i> <i>vivo</i> animal ^[3, 11, 14] .
79.	Rhus succedanea	Anacardiaceae	Fruits	Diuretic	Powders of the fruits mixed with egg and taken ^[4] .
80.	Rotula aquatica	Boraginaceae	Leaves, Stem and Roots	Diuretic, reduce oxalate, calcium and phosphate in urine.	<i>In vitro, in vivo</i> animal assay ^{[17,} ^{15]} .
81.	Sargassum graminifolium	Algae	Whole	Inhibit calcium oxalate crystallization, antioxidant	In vitro assay ^[34] .
82.	Solanum xanthocarpum	Solaneceae	Fruits	Inhibit nucleation, diuretic, antioxidant, maintain balance between promoter and inhibitor	<i>In vivo</i> animal assay ^[3, 6] .
83.	Syzygium aromaticum	Myrtaceae	Flower Buds	Diuretic	Boiled with water and taken. ^[4] .
84.	Tamarindus indica	Caesalpinaceae	Leaves	Diuretic, antibacterial activity, prevent crystal formation, dissolve stone	Decoction of the leaves along with sugar and taken ^[4] .
85.	Tamarindus indicus	Fabaceae	Pulps	Inhibit crystallization	In vivo animal assay [11].
86.	Teraxacum officinale	Asteraceae	Whole Plant	Diuretic, hypocalciuric, hypooxalouric effect	In vivo animal assay ^[25] .
87.	Terminalia arjuna	Combretaceae	Barks	Inhibit nucleation, antioxidant	In vitro assay ^[9, 35] .
88.	Thunbergia alata	Acanthaceae	Leaves	Diuretic	Boiled extract of the leaves is taken ^[4] .
89.	Trachyspermum ammi	Apiaceae	Leaves	Maintain renal function and decrease crystal excretion in urine and retention in renal tissue	<i>In vivo</i> animal assay ^[11, 23] .
90.	Tribulus terrestris	Zygophyllaceae	Roots, Whole Plant, Fruits and Leaves	Decrease oxalate	Root decoction is given. <i>In vivo</i> animal assay ^[11, 23, 14, 21] .
91.	Viburnum opulus	Caprifoliaceae	Fruits	Balance pH, diuretic and antioxidant	Juice of fruits is taken. <i>In vivo</i> animal assay ^[36] .
92.	Wedelia chinensis	Asteraceae	Whole Plant	Diuretic	Decoction of plant is taken ^[4] .
93.	Xanthium strumarium	Asteraceae	Roots	Diuretic	Root decoction is taken ^[4] .
94.	Zea mays	Poaceae	Tassel, Corn Silk,	Diuretic	Corn silk extract is taken ^[3, 14] .

3. Conclusions

Medicinal plants which were used in traditional practices as remedies for the urolithiasis have been well established *in vivo-vitro* test, clinical trial and effective use but are lacking well documented record. By analysing 36 articles of 27 journals this review accumulates information of list of 94 plants of 55 families covering 21 mechanism of action which can suppress urolithiasis with three studied model. Also, conventionally, 20 parts of these plants are used by different modes like boiling, decoction, extract, paste, juice, powder and ash. Hence, plant based medicine are effective herbal alternative as well as mean of discovery of novel drug molecule for curing urolithiatic disorder and researchers should be focused to discover their value for human use.

Conflicts of Interest

Authors declare no conflict of interests regarding the publication of this paper.

References

- Sayana SB, Khanwelkar CC, Nimmagadda VR, Chavan VR, BH R, Kumar N. Evalution of Antiurolithic Activity of Alcoholic Extract of Roots of CissampelosPareira in Albino Rats. Journal of clinical and diagnostic research: JCDR. 2014; 8(7):HC01.
- Anbu J, Suman S, Swaroop KS, Kumar SL, Satheesh SK, Kannadhasan R. Antiurolithiatic activity of ethyl acetate root extract of Ichnocarpusfrutescens using ethylene glycol induced method in rats. J Pharm Sci Res. 2011;

3(4):1182-9.

- Tiwari A, Soni V, Londhe V, Bhandarkar A, Bandawane D, Nipate S. An overview on potent indigenous herbs for urinary tract infirmity: urolithiasis. Asian Journal of Pharmaceutical and Clinical Research. 2012; 5(1):7-12.
- 4. Mikawlrawng K, Kumar S. Current scenario of urolithiasis and the use of medicinal plants as antiurolithiatic agents in Manipur (North East India): a review. International Journal of Herbal Medicine. 2014; 2(1):1-2.
- Shirfule AL, Racharla V, Qadri SS, Khandare AL. Exploring antiurolithic effects of gokshuradipolyherbalayurvedic formulation in ethyleneglycol-induced urolithic rats. Evidence-Based Complementary and Alternative Medicine. 2013; 11.
- Baker PW, Coyle P, Bais R, Rofe AM. Influence of season, age, and sex on renal stone formation in South Australia. The Medical journal of Australia. 1993; 159(6):390-2.
- 7. Devi VK, Baskar R, Varalakshmi P. Biochemical effects in normal and stone forming rats treated with the ripe kernel juice of Plantain (Musa Paradisiaca). Ancient science of life. 1993; 12(3-4):451.
- Heller HJ, Sakhaee K, Moe OW, Pak CY. Etiological role of estrogen status in renal stone formation. The Journal of urology. 2002; 30;168(5):1923-7.
- 9. Mittal A, Tandon S, Singla SK, Tandon C. *In vitro* studies reveal antiurolithic effect of Terminaliaarjuna using quantitative morphological information from

computerized microscopy. International braz j urol. 2015; 41(5):935-44.

- Patel PK, Patel MA, Saralai MG, Gandhi TR. Antiurolithiatic effects of Solanum xanthocarpum fruit extract on ethylene-glycol-induced nephrolithiasis in rats. Journal of Young Pharmacists. 2012; 30;4(3):164-70.
- Yadav RD, Jain SK, Alok S, Mahor A, Bharti JP, Jaiswal M. Herbal plants used in the treatment of urolithiasis: a review. International Journal of Pharmaceutical Sciences and Research. 2011; 1;2(6):1412.
- Pawar AT, Vyawahare NS. Antiurolithiatic activity of Abelmoschus moschatus seed extracts against zinc disc implantation-induced urolithiasis in rats. Journal of basic and clinical pharmacy. 2016; 7(2):32.
- 13. Ghelani H, Chapala M, Jadav P. Diuretic and antiurolithiatic activities of an ethanolic extract of Acoruscalamus L. rhizome in experimental animal models. Journal of Traditional and Complementary Medicine. 2016, 22.
- 14. Lakshmi NV. Antilithiatic ethnomedicinal plants used by the native people of Anantapur district, ap.
- 15. Muneer KC, Hussain M, Shabeeb M, Farsana S, Nasleen S, Lubna D *et al.* Importance Of Plants In The Management Of Renal Calculi–A Review.
- Ahmadi M, Rad AK, Rajaei Z, Mohammadian N, Tabasi NS. Alcearosea root extract as a preventive and curative agent in ethylene glycol-induced urolithiasis in rats. Indian journal of pharmacology. 2012; 1;44(3):304.
- 17. Ram J, Moteriya P, Chanda S. An overview of some promising medicinal plants with *in vitro* anti-urolithiatic activity.
- Pawar AT, Vyawahare NS. Anti-urolithiatic activity of standardized extract of Biophytum sensitivum against zinc disc implantation induced urolithiasis in rats. Journal of advanced pharmaceutical technology & research. 2015; 6(4):176.
- 19. Touhami M, Laroubi A, Elhabazi K, Loubna F, Zrara I, Eljahiri Y *et al.* Lemon juice has protective activity in a rat urolithiasis model. BMC urology. 2007; 5;7(1):1.
- 20. Oliveira RB, Coelho EB, Rodrigues MR, Costa-Machado AR, Sousa JP, Berretta AA *et al.* Effect of the CopaiferalangsdorffiiDesf.leaf extract on the ethylene glycol-induced nephrolithiasis in rats. Evidence-Based Complementary and Alternative Medicine. 2013, 20.
- 21. Thenmozhi P, Guru SP, Kannan M, Sathiya rajeswaran P. Overview on Selected Medicinal Plants Used in the Management of Urolithiasis.
- 22. Balakrishnan A, Kokilavani R, Gurusamy K, Teepa KA, Sathya M. Effect of ethanolic fruit extract of CucumistrigonusRoxb. on antioxidants and lipid peroxidation in urolithiasis induced wistar albino rats. Ancient science of life. 2011; 31(1):10.
- Bouabdelli F, Djelloul A, Kaid-Omar Z, Semmoud A, Addou A. Antimicrobial activity of 22 plants used in urolithiasis medicine in western Algeria. Asian Pacific Journal of Tropical Disease. 2012; 31;2:S530-5.
- 24. Li X, Liang Q, Sun Y, Diao L, Qin Z, Wang W *et al.* Potential Mechanisms Responsible for the Antinephrolithic Effects of an Aqueous Extract of FructusAurantii. Evidence-Based Complementary and Alternative Medicine. 2015, 15.
- 25. Baheti DG, Kadam SS. Antiurolithiatic activity of some traditional medicinal plants against calcium oxalate induced urolithiasis in rats. IJPCBS. 2013; 1;3(4):1276-

85.

- 26. Srinivasa AK, Kuruba L, Khan S, Saran GS. Antiurolithiatic activity of Gokhsuradichuran, an ayurvedic formulation by *in vitro* method. Advanced pharmaceutical bulletin. 2013; 3(2):477.
- 27. Khan A, Khan SR, Gilani AH. Studies on the *in vitro* and *in vivo* antiurolithic activity of Holarrhena antidysenterica. Urological research. 2012; 1;40(6):671-81.
- 28. Shah JG, Patel BG, Patel SB, Patel RK. Antiurolithiatic and antioxidant activity of Hordeumvulgare seeds on ethylene glycol-induced urolithiasis in rats. Indian journal of pharmacology. 2012; 1;44(6):672.
- Das M, Malipeddi H. Antiurolithiatic activity of ethanol leaf extract of Ipomoea eriocarpa against ethylene glycolinduced urolithiasis in male Wistar rats. Indian Journal of Pharmacology. 2016; 1;48(3):270.
- Mehrabi S, Askarpour E, Mehrabi F, Jannesar R. Effects of hydrophilic extract of Nasturtium officinale on prevention of ethylene glycol induced renal stone in male Wistar rats. Journal of Nephropathology. 2016; 5(4):123.
- 31. Rad AK, Rajaei Z, Tehranipour M, Monavar N. The preventive effect of N-butanol fraction of Nigella sativa on ethylene glycol-induced kidney calculi in rats. Pharmacognosy magazine. 2011; 1;7(28):338.
- 32. Khan A, Bashir S, Khan SR, Gilani AH. Antiurolithic activity of Origanumvulgare is mediated through multiple pathways. BMC complementary and alternative medicine. 2011; 17;11(1):1.
- 33. Teepa KA, Kokilavani R, Balakrishnan A, Gurusamy K. Effect of ethanolic fruit extract of Pedalium murex linn. in ethylene glycol induced urolithiasis in male wistar albino rats. Ancient science of life. 2010; 29(4):29.
- Zhang CY, Wu WH, Wang J, Lan MB. Antioxidant properties of polysaccharide from the brown seaweed Sargassumgraminifolium (Turn.), and its effects on calcium oxalate crystallization. Marine drugs. 2012; 16;10(1):119-30.
- 35. Mittal A, Tandon S, Singla SK, Tandon C. Mechanistic Insights into the Antilithiatic Proteins from Terminaliaarjuna: A Proteomic Approach in Urolithiasis. PloS one. 2016; 20;11(9):e0162600.
- 36. İlhan M, Ergene B, Süntar I, Özbilgin S, SaltanÇitoğlu G, Demirel MA *et al.* Preclinical evaluation of antiurolithiatic activity of Viburnum opulus L. on sodium oxalate-induced urolithiasis rat model. Evidence-Based Complementary and Alternative Medicine. 2014, 3.