www.ThePharmaJournal.com

The Pharma Innovation

ISSN: 2277- 7695 TPI 2016; 5(1): 96-98 © 2016 TPI www.thepharmajournal.com Received: 13-11-2015 Accepted: 14-12-2015

J David

Professor, Department of Dairy Technology, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad-211007

Studies on organoleptic evaluation and cost analysis of fruit yoghurt prepared from different levels of milk and strawberry pulp

J David

Abstract

Yoghurt is a snow white, custard like fermented milk product, obtained through the controlled lactic acid fermentation of milk by *Lactobacillus bulgaricus* and *Streptococcus thermophiles*. A study was undertaken by using different levels of Milk and Strawberry pulp i.e. T_1 (95:05), T_2 (90:10), T_3 (85:15), T_4 (80:20) respectively. Experimental fruit yoghurt mix was standardized to 4.0% fat, 11.5% solids not fat, 10% sugar and 2% culture adjusted to 25.2% total solids. Yoghurt samples for different treatments were analyzed for organoleptic attributes (colour and appearance, body and texture, taste and flavour) by trained panelist using 9 point hedonic scale. The fruit yoghurt obtained from (85:15) (T_3) ratio was the best product among all treatments. Thus, as far as product acceptability judged by organoleptic evaluation, the treatment can be rated as $T_3 > T_0 > T_2 > T_4 > T_1$. The data regarding cost of Control and Strawberry pulp fruit yoghurt was found as cheap in T_0 (28.80 Rs/Kg) followed by, T_1 (33.36 Rs/Kg), T_2 (37.92 Rs/Kg), T_3 (42.48 Rs/Kg) and T_4 (47.04 Rs/Kg).

Keywords: Milk, Strawberry pulp, Fruit yoghurt.

Introduction

Fermented milk products have been the essential part of our food consumption; since ancient times. The symbiosis of two most important microorganisms, i.e., Lactobacillus bulgaricus and Streptococcus thermophiles resulted in lactic acid fermentation to convert milk into a fermented milk product known as Yoghurt. It is an exotic product but now very much accommodated as an Indian fermented milk product, because of its nutritional and therapeutic value like Dahi "curd". Yoghurt is a low caloric diet.it can serve as an alternative source of calcium for people, who are lactose intolerant.it can help in stimulation of immune system, reduction in bacterial enzymes and reduction of serum cholesterol.it also help in anti-tumor activity, Folic acid and vitamin B synthesis and enhance mineral bioactivity (David, 2012)^[4]. Yoghurt is a famous fermented dairy product which plays an important role in preventing gastrointestinal infections which causes diarrhea. It also reduces the chances of cancer and lowers the blood cholesterol (Gilliland, 1979)^[5]. Mudgal and Devendra (1999)^[7] remarked that after cow, buffalo, is the most important dairy species. In India, buffalo's milk in general is considered to be inferior to cow's or buffalo's milk and is entirely use for beverage purpose. Yoghurt prepared from milk has been widely accepted for infants and convalescents because of its easy digestibility. Milk is more digestible than cow and buffalo's milk because smaller average size of the fat globules (Jennes and Patton 2005) ^[6]. Milk yoghurt did not show any whey off but preferred for its smooth body and texture and sharp flavour. By the addition of fruit pulps in yoghurt its nutritional content viz. proteins and vitamins enhanced without compromising its palatability. This filler will also give nutritious product at an economic rate, which will make the product further popular in domestic and international market.

Material and Methods

First of all fresh milk was collected and standardized for 6% fat and 9.0% SNF using spray dried skim milk powder. Then the milk was heated at 85°C for 5 minutes. Sugar was added @ of 10% of milk. It was then cooled at 42°C. Milk was then inoculated with 2% culture. At this stage strawberry pulp was added @ 5, 10, 15 and 20%. The mix was then sent for incubation at 42°C. After that yoghurt was filled in the cups and sent for storage under refrigeration. Thus the yoghurt was ready. The samples were analyzed for physicochemical, microbial and organoleptic qualities as per procedure laid down by ICAR manual in Dairy chemistry and microbiology (1972)^[2].

Correspondence: J David

Professor, Department of Dairy Technology, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad-211007

Table 1: Details of different treatments for making Strawberry pulp
fruit Yoghurt.

Materials (%)	Different treatments Strawberry pulp fruit Yoghurt						
	T ₀	T 1	T ₂	T 3	T4		
Milk	100	95	90	85	80		
Strawberry pulp	-	05	10	15	20		

Milk

Standardization (Fat 6.0%, SNF 9.0%)

Heat treatment (85 °C/15 min)

Addition of sugar (10%)

Cooling(42 °C)

Inoculation (2%)

Blending of strawberry pulp

Incubation (42 °C; 4-6 hrs.)

Filling into cups

Storage under refrigeration(3-7 °C)

Fig 1: Flow chart for preparation of Strawberry pulp fruit Yoghurt

Organoleptic Evaluation of the prepared product

Freshly prepared were control and Strawberry pulp fruit Yoghurt served for evaluation to panel members consisting of 5 experienced persons. 9 point hedonic scale proforma was used as suggested by Amerine *et.al.* (1965)^[1].

Results and Discussion

Organoleptic attributes of control and Strawberry pulp fruit Yoghurt.

Table-2 shows organoleptic attributes of control and Strawberry pulp fruit Yoghurt.

Table 2: Average of different Organoleptic Parameters of the Control
and Strawberry pulp fruit Yoghurt.

Parameters	Con	trol an fru	F value	C.D.			
	T ₀	T 1	T ₂	T 3	T 4		
Colour and Appearance	7.76	7.40	7.68	8.20	7.40	6.804*	0.156
Body and Texture	8.00	7.80	7.60	7.40	7.20	1.429**	-
Flavour and Taste	7.92	7.48	7.76	7.82	7.76	8.048*	0.171

* Significant at 5 % level

** Non-significant at 5 % level

Colour and Appearance

Table 3 showed that the highest mean value for colour and appearance in fruit yoghurt was found in T_3 (8.20), followed by T_0 (7.76), T_2 (7.68) T_4 (7.40) and T_1 (7.40). There were significant differences found among the treatments. F Value was 6.804, indicating significant effect of treatment on colour and appearance (Fig.2).

Body and texture

The highest mean value for body and texture were found in T_0 (8.00) followed by T_1 (7.80), T_2 (7.60), T_3 (7.40) and T_4 (7.20). There were no significant differences found among the treatments. F Value was 1.429, indicating no significant effect of treatment on body and texture (Fig.2).

Flavour and Taste

There was significant difference found among the treatments for flavour and taste score. The highest mean value for flavour and taste was found in T_0 (7.92), followed by T_3 (7.82), T_4 (7.76), T_2 (7.76) and T_1 (7.48). F Value was 8.048, indicating significant effect of treatment on flavour and taste (Fig.2).

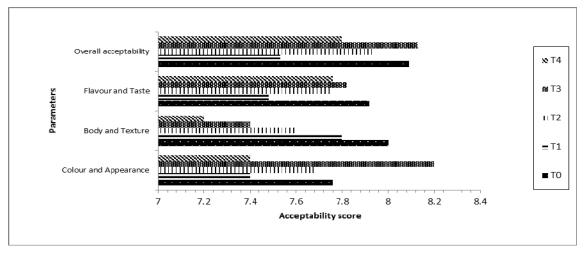


Fig 2: Average of organoleptic parameters and overall acceptability score control and Strawberry pulp fruit Yoghurt.

Overall acceptability of the Control and strawberry pulp fruit Yoghurt

Table 3 and fig.2 showed the highest mean value for overall acceptability of the control and strawberry pulp fruit yoghurt

was found in T_0 (8.09), followed by T_3 (8.13), T_2 (7.93), T_4 (7.80) and T_1 (7.53). The data differed significantly among the treatments, thus showed the acceptability of the fruit yoghurt from milk and strawberry pulp.

 Table 3: Overall acceptability of the Control and Strawberry pulp fruit Yoghurt.

Replication	Contr	ol and s	F value	C.D.			
_	T ₀	T1	T ₂	T3	T ₄		
R1	8.13	7.33	8.00	8.66	7.66	3.703*	
R2	8.66	8.00	8.33	8.33	8.00		0.038
R ₃	8.66	7.66	8.00	8.33	8.00		
R 4	8.00	7.33	7.66	8.00	8.00		
R ₅	7.00	7.33	7.66	7.33	7.33		
Mean	8.09	7.53	7.93	8.13	7.80		

* Significant at 5 % level

** Non-significant at 5 % level

Cost Analysis of control and Strawberry pulp fruit yoghurt The data regarding cost of Control and Strawberry pulp fruit yoghurt was found as cheap in T_0 (28.80 Rs/Kg) followed by, T_1 (33.36 Rs/Kg), T_2 (37.92 Rs/Kg), T_3 (42.48 Rs/Kg) and T_4 (47.04 Rs/Kg) (Table.4 and Fig.3).

Table 4: Cost Analysis of control and Strawberry pulp fruit yoghurt

Parameters	Control and Strawberry pulp fruit yoghurt						
Parameters	T ₀	T_1	T_2	T ₃	T 4		
Cost(Rs/Kg)	28.80,	33.36,	37.92	42.48	47.04		

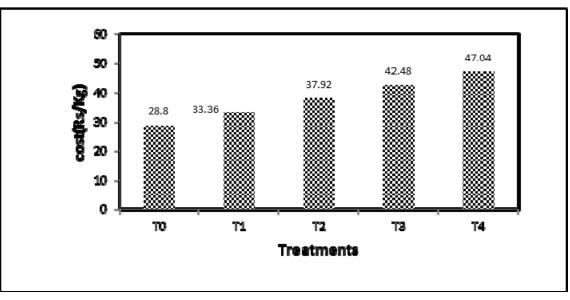


Fig 3: Cost Analysis of control and Strawberry pulp fruit yoghurt

Conclusion

The results obtained from the statistical analysis revealed that the milk and strawberry pulp can be satisfactorily used to manufacture fruit yoghurt. Fruit yoghurt contain 15% strawberry pulp (T₃) found to be best among all the treatments. The data regarding cost of Control and Strawberry pulp fruit yoghurt was found as cheap in T₀ (28.80 Rs/Kg) followed by, T₁ (33.36 Rs/Kg), T₂ (37.92 Rs/Kg), T₃ (42.48 Rs/Kg) and T₄ (47.04 Rs/Kg).

References

- 1. Amerine MA, Pangborn RM, Rossler EB. Principals of sensory evaluation of food. New York Academic Press, 1965, 104-110.
- 2. Anonymous Manual in Dairy Microbiology, Indian council of agricultural research, New Delhi, 1972.
- Chandel SRS. A handbook of Agricultural Statistics, 8th Ed, Anchal prakashan, Kanpur (U.P) India, 1991.
- 4. David J. Yoghurt. In, Technological advances in cheese and fermented milk products. Kitab Mahal, New Delhi, 2012, 250-274.
- Gilliland SE. Beneficial inter relationship between certain microorganisms and humans. Journal of Food product. 1979; 42(2):167-169.
- 6. Jennes R, Patton S. Principals of Dairy Chemistry. New York. John Wiley and sons, 2005.
- 7. Mudgal VD, Devendra C. Some aspects of buffalo nutrition. Indian Dairyman 1999; 31:585.