www.ThePharmaJournal.com

The Pharma Innovation

ISSN: 2277- 7695 TPI 2015; 4(10): 16-18 © 2015 TPI www.thepharmajournal.com Received: 13-10-2015 Accepted: 15-11-2015

J David

Department of Dairy Technology, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad-211007

Sensory Evaluation of different levels of Goat milk and Banana pulp on quality of fruit Yoghurt

J David

Abstract

Yoghurt is a snow white, custard like fermented milk product, obtained through the controlled lactic acid fermentation of milk by *Lactobacillus bulgaricus* and *Streptococcus thermophiles*. A study was undertaken by using different levels of Goat milk and Banana pulp i.e. T_1 (90:10), T_2 (85:15), T_3 (80:20) respectively. Experimental fruit yoghurt mix was standardized to 4.0% fat, 11.5% solids not fat, 10% sugar and 2% culture adjusted to 25.2% total solids. Yoghurt samples for different treatments were analyzed for organoleptic attributes (colour and appearance, body and texture, taste and flavour) by trained panelist using 9 point hedonic scale. The highest mean value for body and texture were found in T_3 (8.34). The highest mean value for flavour and taste was found in T_3 (8.16). The fruit yoghurt obtained from T_3 (80:20) ratio was the best product among all treatments. Thus, as far as product acceptability judged by organoleptic evaluation, the treatment can be rated as $T_3 > T_0 > T_2 > T_1$.

Keywords: Goat milk, Banana pulp, Fruit yoghurt.

Introduction

Fermented milk products have been the essential part of our food consumption; since ancient times. The symbiosis of two most important microorganisms, i.e., Lactobacillus bulgaricus and Streptococcus thermophiles resulted in lactic acid fermentation to convert milk into a fermented milk product known as Yoghurt. It is an exotic product but now very much accommodated as an Indian fermented milk product, because of its nutritional and therapeutic value like Dahi "curd". Yoghurt is a low caloric diet.it can serve as an alternative source of calcium for people, who are lactose intolerant.it can help in stimulation of immune system, reduction in bacterial enzymes and reduction of serum cholesterol.it also help in anti-tumor activity, Folic acid and vitamin B synthesis and enhance mineral bioactivity (David, 2012) [5]. Yoghurt is a famous fermented dairy product which plays an important role in preventing gastrointestinal infections which causes diarrhea. It also reduces the chances of cancer and lowers the blood cholesterol (Gilliland, 1979) [6]. Mudgal and Devendra (1999) [8] remarked that after cow, buffalo, is the most important dairy species. In India, goat's milk in general is considered to be inferior to cow's or buffalo's milk and is entirely use for beverage purpose. Yoghurt prepared from goat milk has been widely accepted for infants and convalescents because of its easy digestibility. Goat milk is more digestible than cow and buffalo's milk because smaller average size of the fat globules (Jennes and Patton 2005) [7]. Goat milk yoghurt did not show any whey off but preferred for its smooth body and texture and sharp flavour. By the addition of fruit pulps in yoghurt its nutritional content viz. proteins and vitamins enhanced without compromising its palatability. This filler will also give nutritious product at an economic rate, which will make the product further popular in domestic and international market. In this study effort has been made to prepare good quality yoghurt from goat milk and banana pulp using the technique of manufacture as recommended by Balasubramanyam et al., (1991) [3].

Material and Methods

First of all fresh goat milk was collected and standardized for 4% fat and 11.5% SNF using spray dried skim milk powder. Then the milk was heated at 85 °C for 5 minutes. Sugar was added @ of 10% of milk. It was then cooled at 42 °C. Milk was then inoculated with 2% culture. At this stage banana pulp was added @ 10, 15 and 20%. The mix was then sent for incubation at 42 °C. After that yoghurt was filled in the cups and sent for storage under refrigeration. Thus the yoghurt was ready (Figure 1).

Correspondence: J David

Department of Dairy
Technology, Sam Higginbottom
Institute of Agriculture,
Technology and Sciences,
Allahabad-211007

Table 1: Details of different treatments for making Banana pulp fruit Yoghurt.

Materials (%)	Different treatments Banana pulp fruit Yoghurt					
	T_0	T_1	T ₂	T ₃		
Goat milk	100	90	85	80		
Banana pulp	-	10	15	20		

Goat milk
↓
Standardization
(Fat 4.0%, SNF 11.5%)
<u></u>
Heat treatment
(85 °C/ min)
↓
Addition of sugar (10%)
↓
Cooling(42 °C)
↓
Inoculation (2%)
↓
Blending of banana pulp
↓
Incubation (42 ⁰ C)
<u></u>
Filling into cups
<u></u>
Storage under refrigeration

Fig 1: Flow chart for preparation of Banana pulp fruit Yoghurt

Organoleptic Evaluation of the prepared product

Freshly prepared control and Banana pulp fruit Yoghurt were served for evaluation to panel members consisting of 5 experienced persons. 9 point hedonic scale proforma was used as suggested by Amerine *et al.* (1965) ^[1].

Statistical analysis

The data obtained on different aspects as per plan were tabulated and statistically analyzed as per Chandel (1991) [4].

Results and Discussion

Average of different Organoleptic Parameters of the Control and Banana pulp fruit Yoghurt.

Table-2 shows organoleptic attributes of control and Banana pulp fruit Yoghurt

Table 2: Average of different Organoleptic Parameters of the Control and Banana pulp fruit Yoghurt.

Parameters	Control and Banana pulp fruit Yoghurt				F value	C.D.
	T_0	T_1	T_2	T ₃		
Colour and Appearance	8.30	8.02	7.70	7.78	50.884*	0.11
Body and Texture	8.24	7.68	7.98	8.34	11.837*	0.25
Flavour and Taste	8.04	7.92	7.94	8.16	4.246*	0.25

^{*} Significant at 5 % level

Colour and Appearance

Table 2 showed that the highest mean value for colour and appearance in fruit yoghurt was found in T_0 (8.30), followed by T_1 (8.02), T_2 (7.7) and T_3 (7.78). There were significant differences found among the treatments. There were significant differences found among the treatments for colour and appearance. F Value was 50.884, indicating significant effect of treatment on colour and appearance (Fig 2).

Body and texture

The highest mean value for body and texture were found in T_3 (8.34), followed by T_0 (8.24), T_2 (7.98) and T_1 (7.68). There were significant differences found among the treatments. F Value was 11.837, indicating significant effect of treatment on body and texture (Fig 2).

Flavour and Taste

The highest mean value for flavour and taste was found in T_3 (8.16), followed by T_0 (8.04), T_2 (7.94) and T_1 (7.92). There were significant differences found among the treatments. F Value was 4.246, indicating significant effect of treatment on flavour and taste (Fig 2).

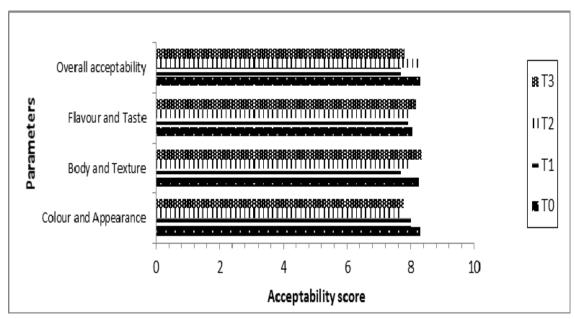


Fig 2: Average of organoleptic parameters and overall acceptability score control and Banana pulp fruit Yoghurt

^{**} Non-significant at 5 % level

Table 3: Overall acceptability of the Control and Banana pulp fruit Yoghurt.

Replication	Contr	ol and Ba Yog	F value	C.D.		
	T_0	T_1	T ₂	T ₃	value	
R_1	8.70	7.9	7.8	8.0		
R_2	8.50	7.8	8.3	7.9	3.621*	0.48
R ₃	8.20	7.7	8.2	7.8		
R ₄	8.06	7.6	8.0	7.7		
R_5	8.04	7.5	8.1	7.6		
Mean	8.30	7.70	8.28	7.80		

^{*} Significant at 5 % level

Overall acceptability scores for Control and Banana pulp fruit Yoghurt

Table 3 and fig.2 showed the highest mean value for overall acceptability of the control and banana pulp fruit yoghurt was found in T_0 (8.3), followed by T_2 (8.28), T_3 (7.80) and T_1 (7.70). F Value was 3.621, indicating significant effect of treatment on Overall acceptability. The data differed significantly among the treatments, thus showed the acceptability of the fruit yoghurt from goat milk and banana pulp.

Table 4: Average of different Microbial Parameters of the Control and Banana pulp fruit Yoghurt.

Parameters	Control and Banana pulp fruit Yoghurt				F value	C.D.
	T ₀	T_1	T ₂	T ₃	value	
Yeast and mold count (10 ²)cfu/g	7.0	8.4	7.6	7.2	2.56**	-
Coliform count (10 ¹)cfu/g	Nil	Nil	Nil	Nil		

^{*} Significant at 5 % level

Average of different Microbial Parameters of the Control and Banana pulp fruit Yoghurt

Table 4 showed the highest mean value for yeast and mold count in fruit yoghurt was found in T_1 (8.4), followed by T_2 (7.6), T_3 (7.2) and T_0 (7.0). There were no significant differences found among the treatments. There were no coliform found in all the treatments, thus indicated proper hygiene was followed during the trials.

Conclusion

The results obtained from the statistical analysis revealed that the goat milk and banana pulp can be satisfactorily used to manufacture fruit yoghurt. Fruit yoghurt contain 20% banana pulp (T_3) found to be best among all the treatments.

References

- Amerine MA, Pangborn RM, Rossler EB. Principals of sensory evaluation of food. New York Academic Press, 1965, 104-110.
- 2. Anonymous Manual in Dairy Microbiology, Indian council of agricultural research, New Delhi, 1972.
- Balasubramanyam BV, Kulkarni S. Standardization of manufacture of yoghurt with apple pulp. Journal of food Science and Tech, Mysore. 1991; 28:6:389-390.
- Chandel SRS. A handbook of Agricultural Statistics, 8th Ed, Anchal prakashan, Kanpur (U.P) India, 1991
- 5. David J. Yoghurt. In, Technological advances in cheese

- and fermented milk products. kitab mahal, New Delhi, 2012, 250-274.
- 6. Gilliland SE. Beneficial inter relationship between certain microorganisms and humans. Journal of Food product. 1979; 42(2):167-169.
- Jennes R, Patton S. Principals of Dairy Chemistry. New York. John Wiley and sons, 2005.
- 8. Mudgal VD, Devendra C. Some aspects of goat nutrition. Indian Dairyman. 1999; 31:585.

^{**} Non-significant at 5 % level

^{**} Non-significant at 5 % level