www.ThePharmaJournal.com

The Pharma Innovation

ISSN: 2277- 7695 TPI 2015; 3(12): 50-56 © 2015 TPI www.thepharmajournal.com Received: 02-01-2015 Accepted: 16-01-2015

Pressy P. Prakasia

Department of Botany, University of Kerala, Kariavattom campus, Thiruvananthapuram, Pin Code: 695581, Kerala, India.

Ashalatha S. Nair

Department of Botany, University of Kerala, Kariavattom campus, Thiruvananthapuram, Pin Code: 695581, Kerala, India.

Correspondence:

Pressy P. Prakasia Research Scholar, Department of Botany, University of Kerala, Kariavattom campus, Thiruvananthapuram, Pin Code: 695581, Kerala, India.

Chemical fingerprint of essential oil components from fresh leaves of *Glycosmis pentaphylla* (Retz.) Correa

Pressy P. Prakasia, Ashalatha S. Nair

Abstract

The present research was undertaken to characterize the promising bioactive constituents of *Glycosmis pentaphylla* leaves. The volatile oil was obtained by hydrodistillation and the components present were analyzed by gas chromatography-mass spectrometry. Elucidation on mass spectrum GC-MS was conducted using the database of National Institute of Standard and technology (NIST). The GC-MS analysis of essential oil of *Glycosmis pentaphylla* leaves resolved into sixty seven compounds representing 99.71% of essential oil. The active principles with their retention time, peak area, molecular formula, molecular weight, structure and category of the compound were predicted. Phytol (28.03%) was the dominant compound in the oil. From the present study, it is revealed that the oil present in leaf is very rich in diverse phytochemicals. Most of the identified compounds are basically biological important. The results are in conformity with the tribal conviction for which they use as traditional medicine for diverse bioactivities and curing of ailments.

Keywords: Glycosmis pentaphylla, essential oil, GC-MS, Phytol, sesquiterpenes.

1. Introduction

The therapeutic use of plants against critical human illnesses predates recorded history and represents the most significant direct antecedent to modern medicine ^[1]. Scientific research has allowed discovering a wide range of active constituents, of which the most important as far as health is concerned are essential oils, alkaloids, glycosides or heterosides, mucilage and gums, and tannins. The active constituents specific to a particular species are characterized as chemical markers. Use of chemical markers is an effective tool to resolve problems in standardization of botanicals, using chemical fingerprinting and in chromatographic finger printing of botanicals to demarcate them on the basis of their chemotypes and geographical origin ^[2].

Glycosmis pentaphylla, belonging to the Rutaceae family, is a shrub or small (1.5-5 m) tree, widely distributed, spanning from India, Malaysia and Southern China to the Philippine Islands where it occurs in tropical forests at low altitudes. It has been used as folk medicine for the treatment of fever, liver complaints, jaundice, cough, eczema, anaemia, diarrhoea, and rheumatism ^[3, 4]. Phytochemically speaking, *Glycosmis pentaphylla* were investigated on a few occasions. Most of the phytochemical work realized in this field resulted in the isolation of hydrophobic alkaloids acridone, carbazoles, quinolones and quinazolones [5-8]. Studies showed the extracts of G. pentaphylla having potent anthelmintic, antipyretic, hepatoprotective, antibacterial, antioxidant, antidiabetic and antinociceptive properties [9, 10]. Regarding the phytochemistry of essential oil of G. pentaphylla, the composition of essential oil was shown, and aliphatic ketones 2- tridecanone 6,10,14- trimethyl-2-pentadecanone were the major components identified [11]. Review of literature divulges that the essential oil composition within the species may vary significantly and such differences in the composition of their essential oil could be due to natural chemical variation called chemotype, which occur in the secondary metabolism of plants and could possibly due to organ of the plant studied and also induced by environmental factors such as soil type, altitude, sun exposure, rain and seasonal variation besides the method of oil isolation ^[12]. As far the literature investigation could ascertain, the fresh leaves of Glycosmis pentaphylla were never examined regarding their volatile oil composition. Hence, the aim of the present study is to provide the first detail GC-MS analysis of the volatile components of the fresh leaves of Glycosmis pentaphylla.

2. Materials and Methods

2.1 Plant material

Fresh leaves of *Glycosmis pentaphylla* were collected from its natural habitat from district of Thiruvananthapuram (Latitude-8.54°N and Longitude- 76.91°E), Kerala, India, in January 2014. The titled plant was botanically identified by Curator, department of Botany, University of Kerala and a voucher specimen (KUBH 5858) has been deposited at the herbarium of Botany department, University of Kerala, India.

2.2 Extraction of essential oil

The leaves were slightly washed to remove dust and other physical contaminants. The leaves were then reduced to a suitable size using electric blender and loaded them in the extraction flask. The essential oil was extracted by hydrodistillation for 8 h (60 g of sample in 500 mL of distilled water) using Clevenger apparatus ^[13]. The essential oil obtained was separated from aqueous phase and stored in sealed glass vial protected from the light at 4 °C until analysis. The oil sample was subsequently analysed by GC-MS.

2.3 GC-MS analysis

The analysis of the oil was performed using GC-MS (Model: GCMS- QP 2010, Shimadzu, Tokyo, Japan) equipped with a VF 5 ms fused silica capillary column of 30 m length, 0.25 mm diameter and 0.25 mm film thickness. For GC-MS detection, electron ionization energy of 70 eV was used. The carrier gas was Helium (99.99%) used ata constant flow rate of 1.51 ml/min. Injector and mass transfer line temperature were set at 2000 C and 2400 C respectively. The oven temperature was set from 70 to 2200 C at 100 C/min. Two μ L of sample was injected in a split mode with a scan range of 40-1000 m/z. The total running time of GC-MS was 31 min. The relative percentage of the extract was expressed as percentage with peak area normalization.

2.4 Identification of the compounds

Elucidation on mass spectrum GC-MS was conducted using the database of National Institute of Standard and technology (NIST). The spectrum of the unknown components was compared with the spectrum of the known components stored in the NIST08 library source ^[14]. The name, molecular weight and molecular mass of the identified compounds were further confirmed by comparison of their retention indices with literature data. For quantitative analysis, compounds concentrations (as % content) were calculated by integrating their corresponding chromatographic peak areas.

3. Results

The essential oil of fresh leaves of *Glycosmis pentaphylla* was obtained by conventional hydro- distillation method using a Clevenger apparatus. The hydrodistillation gave characteristic odour, golden yellow oil. In this study GC-MS fingerprinting of essential oil of fresh leaves of *Glycosmis pentaphylla* revealed several peaks. The gas chromatogram shows the relative concentrations of various compounds getting eluted as a function of retention time (Figure 1). Identification of the compounds was accomplished by comparing their mass spectra and retention indices with those given in the literature and those authentic samples. The active principles with their retention time (RT), molecular formula, molecular weight (MW) and concentration (%) are presented in Table 1. They are listed by their order of retention times. The heights of the peak indicate the relative concentrations of the compounds present in essential oil of *Glycosmis pentaphylla* leaves. Sixty seven compounds were identified representing about 99.71% of the total oil's compounds.

The most prevailing major compounds were Phytol (28.03%), 2-methylene-4,8,8-trimethyl-4-vinyl Bicyclo[5.2.0]nonane, (10.93%), 1,19-Eicosadiene (9.84%), 1,6-Cyclodecadiene, 1methyl-5-methylene-8-(1-methylethyl)-,[S(E,E)]-(4.63%),Caryophyllene oxide (4.32%), (-)-Spathulenol (3.92%) and Bicyclogermacrene (3.55%)., and the minor compounds were Bicyclo[4.4.0]dec-1-ene, 2-isopropyl-5-methyl-9-methylene-(2.11%), Epiglobulol (1.75%), (-)-Globulol (1.59%), Naphthalene, 1, 2, 3, 5, 6, 8a-hexahydro-4, 7-dimethyl-1-(1methylethyl)-(1S-cis)-(1.53%), 1H Indene, (1.33%), Ledol (1.33%), Cyclohexane ,1-ethenyl -1-methyl -2,4-bis (1methylethenyl)-, [1S-(1.alpha.,2.beta.,4.beta.)]-(1.23%),Santolina triene (1.23%), Toluene (1.20%), Humulene (1.20%), gamma.-Elemene (1.18%), 2-Pyrrolidinone (1.10%) and Cyclohexane, 1-ethenyl-1-methyl-2-(1-methyethenyl)-4-(1-methylethylidene)- (1.05%). The remaining compounds

were present in less than 1%. Chemical class of the detected volatile compounds are displayed in Table 2. The compounds were separated into monoterpenes, sesquiterpenes, diterpenes, alkanes and alkenes, fatty acids and others. The most representative compounds were sesquiterpenes (46.39%) followed by diterpenes (28.58%), fatty acids (10.61%), monoterpenes (5.81%) and alkane and alkene (3.83%). Major phytocompounds and its biological activities obtained through the GC-MS study of leaves of *Glycosmis pentaphylla* are presented in Table 3. The biological activities listed are based on Dr. Duke's phytochemical and ethnobotanical online databases by Dr. Jim Duke of Agricultural Research Service/ USDA.

4. Discussion

The chemical and chromatographic fingerprints provide adequate information about the safety and credibility, with evidence for the product. A chemical profile of sixty seven compounds was identified representing about 99.71% of the total oil's compounds. Usually the major compounds mirror the biological activities of the essential oil from which it is extracted. Essential oil of *G. pentaphylla* composed mainly of terpenes (monoterpenes, sesquiterpene and diterpene) and its biological activity may be attributed to its high concentration. However, the activity of major components may be modulated by other minor components present in the oil.

Among the identified compounds, the diterpene alcohol, Phytol, which is at hand in highest with 28.09%, is vital in the dispensation of glucose and can trigger enzymes within the body that have strong positive effects on insulin level. This means that Phytol in the human diet could perhaps help reinstate the metabolic activities of those with type-2 diabetes. Phytol confirmed a strong antioxidant effect in vitro in its capacity to remove hydroxyl radicals and nitric oxide as well as to prevent the formation of thiobarbituric acid reactive substances (TBARS)^[15]. Sesquiterpene biosynthesis seems to be complex since the formation *via* either pathway (mevalonic or methylerythrytol) or a combination of both has been reported ^[16]. Nevertheless, these appear to be ubiquitous in plant taxa and some insects, and are associated to the cytosolmitochondria. Sesquiterpenes were reported to have antihyperlipidemic activity.

Fig 1: GC-MS Chromatogram of essential oil of Glycosmis pentaphylla leaves

Peak	Name of the compound	RT	Molecular	Molecular weight	Area
110			101 IIIula	(g/mol)	/0
1	Toluene	2.29	C7H8	92.13	1.2
2	3- Hexen-1-ol, (Z)	3.21	$C_6H_{12}O$	100.15	0.3
3	.beta. – Pinene	5.39	$C_{10}H_{16}$	136.23	0.45
4	2-Pyrrolidinone, 1-methyl-	6.39	C4H7NO	85.1	1.1
5	.betaOcimene	6.62	$C_{10}H_{16}$	136.23	0.17
6	1,6- Octadien-3-ol, 3,7-dimethyl-	7.61	$C_{11}H_{18}O_2$	182.25	0.41
7	Terpinen-4-ol	9.11	$C_{10}H_{18}O$	154.24	0.53
8	.alphaTerpineol	9.36	$C_{10}H_{18}O$	154.24	0.3
9	cis-3-Hexenyl isovalerate	9.86	C9H16O2	156.23	0.28
10	1,5,5-Trimethyl-6-methylene-cyclohexene	11.56	$C_{10}H_{16}$	136.23	0.29
11	2-Carene	11.6	$C_{10}H_{16}$	136.23	0.7
12	.alphaCubebene	11.79	C15H24	204.35	0.13
13	.alfaCopaene		C15H24	204.35	0.11
14	5-Amino-1-phenylpyrazole	12.33	C9H9N3	159.19	0.27
15	Cyclohexane, 1-ethenyl-1-methyl-2,4-bis(1-methylethenyl)- ,[1S-(1.alpha.,2.beta.,4.beta.)]-	12.42	C15H24	204.35	1.23
16	Caryophyllene	12.69	C15H24	204.35	0.3
17	1H-Cyclopro[e]azulene, 1a,2,3,4,4a,5,6,7b-octahydro- 1,1,4,7-tetramethyl-,[1arR- (1a.alpha.,4.alpha.,4a.beta.,7b.alpha.)]-	12.72	C ₁₅ H ₂₄	204.35	0.34
18	Bicyclo[5.2.0]nonane, 2-methylene-4,8,8-trimethyl-4-vinyl-	12.92	C15H24	204.35	10.93
19	.gammaElemene	12.98	C15H24	204.35	1.18
20	.betacopaene	13.04	C15H24	204.35	0.37
21	Aromadendrene	13.18	C15H24	204.35	0.47
22	Humulene	13.42	C15H24	204.35	1.2

Table 1: Phytod	compounds identifie	in the essential	oil of Glycosmis	<i>pentaphylla</i> leaf b	y GC-MS.
-----------------	---------------------	------------------	------------------	---------------------------	----------

23	Alloaromadendrene	13.49	$C_{15}H_{24}$	204.35	0.42
24	.gammaMuurolene	13.64	C15H24	204.35	0.97
25	Naphthalene, 1,2,4a,5,6,8a-hexahydro-4,7-dimethyl-1-(-1- methylethyl)-	13.7	$C_{15}H_{24}$	204.35	0.31
26	1,6-Cyclodecadiene, 1-methyl-5-methylene-8-(1- methylethyl)-, [S(E,E)]-	13.76	C15H24	204.35	4.63
27	Naphthalene, 1,2,3,5,6,7,8,8a-octahydro-1,8a-dimethyl-7- (1-methylethylene)-,[1R-(1.alpha.,alpha.,7.beta.,8a.alpha.)]-	13.89	C15H24	204.35	0.61
28	Bicyclogermacrene	13.96	C15H24	204.35	3.55
29	1H-Cycloprop[e]azulene, decahydro 1,1,7-trimethyl-4- methylene-	14.03	C15H24	204.35	0.29
30	.gammaMuurolene	14.17	C15H24	204.35	0.41
31	Naphthalene, 1,2,3,5,6,8a-hexahydro-4,7-dimethyl-1-(1- methylethyl)-(1S-cis)-	14.21	C15H24	204.35	1.53
32	Hotrienol	14.32	C10H16O	152.23	0.32
33	Aromandendrene	14.48	C15H24	204.35	0.57
34	Caryophyllene oxide	14.72	C15H24O	220.35	0.51
35	Cyclohexane, 1-ethenyl-1-methyl-2-(1-methyethenyl)-4- (1-methylethylidene)-	14.83	C ₆ H ₁₂	84.16	1.05
36	3-Hexen-1-ol, benzoate, (Z)	14.89	C13H16O2	204.26	0.2
37	4,7-Methanoazulene, 1,2,3,4,5,6,7,8-octahydro-1,4,9,9- tetramethyl-[1S-(1.alpha.,4.alpha.,7.alpha.)]-	14.97	C15H24	204.35	0.49
38	(-)-Spathulenol	15.05	C15H24O	220.35	3.92
39	Caryophyllene oxide	15.15	C15H24O	220.35	4.32
40	(-)-Globulol	15.29	C15H26O	222.36	1.59
41	1 H Indene, 1-ethylideneoctahydro-7a-methyl-(1E, 3a.alpha.,7a.beta.)	15.44	С9Н8	116.16	1.33
42	cis-Thujopsene	15.52	C15H24	204.35	0.35
43	Ledol	15.67	C15H26O	222.36	1.33
44	Santolina triene	15.73	C10H16	136.23	1.23
45	Bicyclo[4.4.0]dec-1-ene, 2-isopropyl-5-methyl-9- methylene-	15.84	C15H24	204.35	2.11
46	Alloaromadendrene	15.96	C15H24	204.35	0.31
47	Epiglobulol	16.01	C15H26O	222.36	1.75
48	.betaHumulene	16.09	C15H24	204.35	0.45
49	Isoaromadendrene epoxide	16.2	C15H24O	220.35	0.35
50	trans-ZalphaBisabolene epoxide	16.39	C15H24O	220.35	0.52
51	1H-Cycloprop[e]azulene	16.47	C15H24	204.35	0.07
52	Benzoic acid, heptadecyl ester	17.11	C23H28N2O3	380.48	0.29
53	transbetaIonone	17.43	C13H20O	192.29	0.39
54	Isoshyobunone	17.67	C15H24O	220.35	0.25
55	2-Pentadecanone, 6.10.14-trimethyl	18.03	C18H36O	268.47	0.26
56	Isophytol	19.16	C20H40O	296.53	0.23
57	Phytol	20.61	C20H40O	296.53	0.2
58	alpha -Pyrrolidone, 5-[3-hydroxybutyl]-	20.8	CeH15NO2	157.21	0.13
59	Phytol	20.86	C20H40O	296.53	28.03
60	Cyclopentane, 1.2.3.4.5-pentamethyl-	21.15	C10H20	140.26	0.51
61	3-Eicosene (E)-	21.21	C20H40	280.53	0.15
62	trans-Geranyloeraniol	21.21	C20H34O	290.48	0.12
63	Fumaric acid cis-bex-3-envl tetra decvl ester	23.32	C4H4O4	116.07	0.23
64	Cyclopentane 1 1 3-trimethyl	25.82	C5H10	70.13	_0.25
65	9-Undecen-2-one 6 10-dimethyl	26.85	C12H24O	196 33	0.57
66	1 19- Eicosadiene	27.26	C20H20	278 51	9.84
		27.20	~201138	270.31	7.04
67	1,4-Bis(trimethylsilyl)benzene	33.84	$C_{12}H_{22}Si_2$	222.47	0.89
1	Monotomonos				£ 01
	Securitemenes				3.81
2	Ditamonos				40.39
<u>∠</u>					20.38
4	Aikane and Aikene				5.85
D	Faity actus				10.01
4					4.49
	1 otal identified components				99.71

RT: Retention time

Area %: relative percentage obtained from peak area

Table 2: Nature of the compound

Peak no	Name of the compound	Nature of compound
1	Toluene	Aromatic hydrocarbon
2	3- Hexen-1-ol, (Z)	Alcohol
3	.beta. – Pinene	Monoterpene
4	2-Pyrrolidinone,1-methyl-	Pyrrolidines (aliphatic heteromonocyclic compounds)
5	.betaOcimene	Monoterpene
6	1,6- Octadien-3-ol, 3,7-dimethyl-	Monoterpene
7	Terpinen-4-ol	Monoterpene
8	.alphaTerpineol	Monoterpene alcohol
9	cis-3-Hexenyl isovalerate	Fatty acid
10	1.5.5-Trimethyl-6-methylene-cyclohexene	Monoterpene
11	2-Carene	Monoterpene
12	alpha -Cubebene	Sesquiterpene
12	alpha -Copaene	Sesquiterpene
14	5-Amino-1-phenylpyrazole	Azoles
14	Cyclohexane 1-ethenyl-1-methyl-2	120105
15	4-bis(1-methylethenyl)- [1S-	Cycloalkane
15	$(1 \text{ alpha } 2 \text{ beta } 4 \text{ beta })]_{-}$	Cyclodikulie
16	Carvonhyllene	Bievelie sesquiterpene
10	14 Cyclopro[a]azulana 1a 2 3 4 4a 5 6 7b	Breyene sesquiterpene
17	octobudro 1 1 4 7 totromothyl [1arP	Triovalia sasquitarpona
17	(1a alpha A alpha A beta 7b alpha)]	Theyene sesquiterpene
	(1a.alpha.,4.alpha.,4a.beta.,7b.alpha.)]-	
18	bicyclo[3.2.0]fiolialie, 2-methylene-4,6,6-	Sesquiterpene
10	anne Elemene	Monografia cocquitormono
19	.gammaElemene	
20	.betacopaene	
21	Aromandendrene	Tricyclic sesquiterpene
22	Humulene	Monocyclic sesquiterpene
23	Alloarmadendrene	Tricyclic sesquiterpene
24	.gammaMuurolene	Oxygenated sesquiterpene
25	Naphthalene, 1,2,4a,5,6,8a-hexahydro-4,7-	Hydrocarbon sesquiterpene
-	dimethyl-1-(-1-methylethyl)-	· · · · · · · · · · · · · · · · · · ·
26	1,6-Cyclodecadiene, 1-methyl-5-methylene-	Sesquiterpene
-	8-(1-methylethyl)-,[S(E,E)]-	
	Naphthalene, 1,2,3,5,6,7,8,8a-octahydro-	
27	1,8a-dimethyl-7-(1-methylethylene)-,[1R-	Hydrocarbon sesquiterpene
	(1.alpha.,alpha.,7.beta.,8a.alpha.)]-	
28	Bicyclogermacrene	Monocyclic sesquiterpene
29	IH-Cycloprop[e]azulene, decahydro 1,1,/-	Tricyclic sesquiterpene
	trimethyl-4-methylene-	
30	.gammaMuurolene	Oxygenated sesquiterpene
31	Naphthalene, 1,2,3,5,6,8a-hexahydro-4,7-	Hydrocarbon sesquiterpene
	dimethyl-1-(1-methylethyl)-(1S-cis)-	,
32	Hotrienol	Monoterpene
33	Aromandendrene	Tricyclic sesquiterpene
34	Caryophyllene oxide	Bicyclic sesquiterpene
35	Cyclohexane, 1-ethenyl-1-methyl-2-(1-	Cvcloalkane
	methyethenyl)-4-(1-methylethylidene)-	
36	3-Hexen-1-ol, benzoate, (Z)	Monoterpene
	4,7-Methanoazulene, 1,2,3,4,5,6,7,8-	
37	octahydro-1,4,9,9-tetramethyl-[1S-	Sesquiterpene
	(1.alpha.,4.alpha.,7.alpha.)]-	
38	(-)-Spathulenol	Oxygenated sesquiterpene
39	Caryophyllene oxide	Bicyclic sesquiterpene
40	(-)-Globulol	Tricyclic hydroazulene sesquiterpene
41	1H Indene, 1-ethylideneoctahydro-7a-	Bievelic aromatic compound
71	methyl-, (1E,3a.alpha.,7a.beta.)	Diegene aromatie compound
42	cis-Thujopsene	Sesquiterpene
43	Ledol	Crystalline sesquiterpene
44	Santolina triene	Oxygenated monoterpene
15	Bicyclo[4.4.0]dec-1-ene, 2-isopropyl-5-	Undreasthan associations
43	methyl-9-methylene-	nyurocarbon sesquiterpene
46	Alloaromadendrene	Tricyclic sesquiterpene
47	Epiglobulol	Oxygenated sesquiterpene
48	.betaHumulene	Monocyclic sesquiterpene
49	Isoaromadendrene epoxide	Tricyclic sesquiterpene

50	trans-ZalphaBisabolene epoxide	Oxygenated sesquiterpene
51	1H-Cycloprop[e]azulene	Tricyclic sesquiterpene
52	Benzoic acid, heptadecyl ester	Aromatic carboxylic acid
53	transbetaIonone	Monocyclic monoterpene
54	Isoshyobunone	Monocyclic monoterpene
55	2-Pentadecanone, 6,10,14-trimethyl	Fatty acid ketone
56	Isophytol	Acyclic diterpene
57	Phytol	Acyclic diterpene alcohol
58	.alphaPyrrolidone, 5-[3-hydroxybutyl]-	Pyrrolidines
59	Phytol	Acyclic diterpene alcohol
60	Cyclopentane, 1,2,3,4,5-pentamethyl-	Cycloalkane
61	3-Eicosene, (E)-	Acyclic alkene
62	trans-Geranylgeraniol	Diterpene alcohol
63	Fumaric acid, cis-hex-3-enyl tetra decyl ester	Unsaturated fatty acid
64	Cyclopentane, 1,1,3-trimethyl-	Cycloalkane
65	9-Undecen-2-one, 6,10-dimethyl	Acyclic monoterpene
66	1,19- Eicosadiene	Aliphatic fatty acid
67	1,4-Bis(trimethylsilyl)benzene	Cycloalkane

Table 3: Biological activities of major compounds

Name of the compound	Peak area %	Biological activity*	Nature of compound
Bicyclogermacrene	3.55	Antimicrobial, anti-inflammatory, anticancer, antiplasmodial, antifeedant, phytotoxic, inhibitor of tumour necrosis and interleukin-6	Sesquiterpene
(-)-Spathulenol	3.92	Immunomodulatory effects, mosquito repellant activity, antimicrobial, anti-inflammatory	Oxygenated Sesquiterpene
Caryophyllene oxide	4.32	Trypanocidal activity,antiedemic, antifeedant, anti- inflammatory, antitumor, calcium antagonist, fungicide, insecticide, pesticide	Oxygenated Sesquiterpene
1,6-Cyclodecadiene, 1-methyl-5- methylene-8-(1-methylethyl)-, [S(E,E)]-	4.63	Antimicrobial, antioxidant, deterrent effects against herbivores, insecticidal activity against mosquitoes, antibacterial	Sesquiterpene
1,19- Eicosadiene	9.84	No activity reported	Fatty acid
Bicyclo[5.2.0]nonane, 2-methylene- 4,8,8-trimethyl-4-vinyl-	10.93	Antimicrobial, anti-inflammatory, antihyperlipidemic, antioxidant	Sesquiterpene
Phytol	28.03	Cytotoxic, antinociceptive, antioxidant, antimicrobial, anti-inflammatory, anticancer, diuretic	Diterpene

*Biological Activity: Dr. Duke's Phytochemical and Ethnobotanical Database.

Some sesquiterpene hydrocarbons present in this oil have been reported to exhibit antibacterial activity such as Bicyclo[5.2.0]nonane, 2-methylene-4,8,8-, (-)-Spathulenol, Bicyclogermacrene and 1,6-Cyclodecadiene, 1-methyl-5methylene-8-(1-methylethyl)-, [S(E,E)]-. The compound Caryophyllene oxide is an oxygenated sesquiterpene, and it has been suggested to function as trypanocidal acivity ^[17]. It also has biological properties of antiedemic, antifeedant, antiinflammatory, antitumor etc. Immunomodulatory effects of Spathulenol have been reported. Bicyclo [5.2.0]nonane, 2methylene-4,8,8-trimethyl-4-vinyl- is a sesquiterpene, is known to possess anti-inflammatory, antihyperlipidemic properties. Monoterpenes, have shown sound effects on mevalonate metabolism, linked to the maintenance of cell membrane, which could add to terpene tumor suppressive action. Thus, the presence of monoterpenes in the selected active fractions explains their antiproliferative actions against some tumor cell lines. Studies indicated that the activity of the essential oil may be due to the synergistic effects of the active compounds. The reports on the chemical composition of the essential oils of G. pentaphylla leaves are few in the literature.

An assessment with literature data showed that the compounds identified in the present study showed variation in the chemical composition pattern to those reported for the same species growing in another geographical region ^[18]. It is noteworthy to point out that the constituents of the plants essential oils are normally influenced by several factors such as geographical, climatic, seasonal and experimental conditions.

5. Conclusion

This is the first report on the chemical composition of essential oil of fresh leaves of *Glycosmis pentaphylla*. The result reveals the existence of various bioactive compounds and validates the earlier reports of therapeutic importance of the plant. It is strongly recommended that this medicinal plant needs further research in many-sided field of natural products to isolate, typify and explicate the structure of bioactive molecules to endure the clinical trials to develop a safety and effectual plant-based natural drug for various ailments in the point of health security.

6. Acknowledgement

The authors are thankful to Dr. P.M Rhadhamany, Associate Professor and Head, Department of Botany, University of Kerala, Kariyavattom, for providing the required facilities for the conduct of this research work.

7. References

- 1. Dutt R, Garg V, Madan AK. Can plants growing in diverse hostile environments provide a vital source of anticancer drugs? Journal of Cancer Therapy 2014; 10:13-37.
- Soumya PR, Choudary KA, Kar DM, Lopanudra Das, Jain A. Plants in traditional medicinal system- Future source of new drugs. International Journal of Pharmacy and Pharmaceutical Science. 2009; 1:1-23.
- 3. Kirtikar KR, Basu BD. Indian Medicinal Plants. Dehradun, International Book Publisher. 1993, 16:21-22.
- Ghani A. Medicinal plants of Bangladesh. 2nded. Bangladesh, Asiatic society of Bangladesh, 2003, 1-17.
- Bhattacharyya P, Chowdhury BK. Glycolone, a quinolone alkaloid from *Glycosmis pentaphylla*. Phytochemistry 1985; 24:634-635.
- Chowdhury BK, Mustapha A, Garba M, Bhattacharya P. Carbazole and 3- methylcarbazole from *Glycosmis pentaphylla*. Phytochemistry 1987; 26:2138-2139.
- 7. Roy KS, Chakraborty DP. Mupamine from *Glycosmis pentaphylla*. Phytochemistry1989; 28:677-678.
- Sarkar M, Chakraborty DP. Some minor constituents from *Glycosmis pentaphylla*. Phytochemistry 1977; 16:2007-2008.
- Jaya RN, Rao BG. Evaluation of hepatoprotective activity of *Glycosmis pentaphylla* roots against CCl₄ induced acute liver injury in rats. International Journal of Pharmacy Science Review and Research 2010; 4(2):81-86.
- Gupta N, Agarwal M, Bhatia V, Jha SK, Dinesh J. *In vitro* antioxidant activity of crude extracts of the plant *Glycosmis pentaphylla* Correa. International Journal of Pharmacy Science Review and Research 2011; 6(2):159-162.
- 11. Nayive PB, Erika MML, Elena ES. Essential Oil Composition from Two Species of Piperaceae Family Grown in Colombia. Journal of Chromatographic Science 2009; 47:804-807.
- 12. Singariya P, Kumar P, Mourya KK. Identification of New Bioactive Compounds by GC-MS and Estimation of Physiological and Biological Activity of Kala Dhaman (*Cenchrus setigerus*). International Journal of Pharmaceutical and Biological Archives 2012; 3(3):610-616.
- Clevenger JF. Apparatus for determination of volatile oil. Journal of American Pharmacists Association 1928; 17:346-349.
- Stein SE. National Institute of Standards and Technology (NIST), Mass Spectral Database and Software. Version 3.02. Gaithersburg, USA, 1990.
- 15. Camila Carolina de Mnezes Patricio Santos, Mirian Stiebbe Salvadori, Vanine Gomes Mota, Luciana Muratori Costa, Antonia Amanda Cardoso de Almeida, Guilherme Antonio Lopes de Oliveira, *et al.* Antinociceptive and antioxidant activities of Phytol *In vivo* and *In vitro* Models. Journal of Neuroscience 2013, 1-9.
- 16. Umlauf D, Zapp J, Becker H, Adam KP. Biosynthesis of the irregular monoterpene artemisia ketone, the sesquiterpene germacrene D and other isoprenoids in

Tanacetum vulgare L. (Asteraceae). Phytochemistry 2004; 65(17): 2463-2470.

- Polanco-Hernández G, Escalante-Erosa F, García-Sosa K, María ER, Eugenia GM, Karla Y, Acosta-Viana *et al.* Synergistic Effect of Lupenone and Caryophyllene Oxide against *Trypanosoma cruzi*. Evidance Based Complement and Alternative Medicine 2013, 1-6.
- Riyazzudin A, Sadananda C, Ingrid V, Piet AL. Essential Oils of *Glycosmis pentaphylla* (Cor.). A New Report from Assam, India. Journal of Essential Oil Research 2000; 12(4):471-474.