Constraints of paddy grower farmer in Azamgarh district of Eastern Uttar Pradesh

Rajeev Singh, GP Singh, Tushar Raghuvanshi, Chandan Singh and Vineet Singh

Abstract

This study was conducted in Martinganj Block of District Azamgarh in Uttar Pradesh. Following purposing random sampling technique, 100 sample farmers were selected and interviewed for collection of data. Cobb –Douglas production function was fitted to found out resource use efficiency. Return to scale in all farm size was found more than unity (1.025 in marginal, 1.014 in small, 1.063 in medium, and 1.754 in large farm), indicates that production of paddy was characterized by increasing return to scale in case of all categories of farm, manure & fertilizer, irrigation charges, human labor and seed; the value of marginal value product (MVP) to factor cost were found positive indicating there is future scope for increasing in the investment to realize more return. In various problems, technical problem ranked first followed by management problem, agro-climatic problem and miscellaneous problem.

Keywords: Purposing random sampling technique, tabular analysis and weighted mean

Introduction

Paddy (oryza sativa L.) belongs to the Graminey family is the most important food crops of India and is likely to be continued as dominant food crop in future also. The highest percentage of people of the country is engaged in the processing and marketing of paddy. Besides rice consumption as food the byproduct of rice that i.e. paddy husk is also used for different purpose conventionally, husk is used as fuel, soil conditioner, packaging material animal feed and for insulation purpose. It is also used for manufacturing the building material and other chemicals, Rice barn is used for extraction of edible oil, industrial oil and animal feed. However, it has been recognized as a very useful source of proteins, carbohydrates, avitamins, paddy straw is one of the major sources of dry fodder in animal feed. Rice provides a significant amount of foreign exchange every year. At world level, export of milled rice was 30536.67 thousand tonnes, at Asia level, 22034.35 thousand tonnes and at India level, 4736.87 thousand tonnes (2006-07). Rice production in Azamgarh district has higher scop for increasing the income and employment of the farmers in the area but no any economic study has so for conducted on Paddy cultivation. Keeping in view the importance of Paddy cultivation the study entitled “Economics of paddy cultivation in Azamgarh district of eastern U.P.” has been proposed to conduct the study during 2010-12 in Azamgarh District.

Methodology

(1) Sampling Design

Purposive random sampling technique was used to select the sample respondent. Azamgarh district of Uttar Pradesh and Martinganj block of district Azamgarh were selected purposely. A list of all the paddy growing villages of the selected block was prepared and arranged in descending order on the basis of magnitude of area under paddy and 5 villages were selected randomly from this list. A list of all the paddy cultivators of each selected villages prepared along with their size of holding and was arranged in ascending order. From this list 100 sample farmers (i.e. 39Marginal<1ha, 33Small, 19 Medium, 9 Large and above) were selected following the proportionate random sampling technique

(2) Method and Period of Enquiry

The primary data were collected by survey method through personal interview on well-structured and pre tested schedule for the Agricultural year 2011-2012.
(3) Methods and Techniques of Analysis

The data collected from the sample cultivators were analyzed and estimated with certain statistical techniques.

Weighted Average: The simplest and important measures of average which have been used into statistical analysis was the weighted average. The formula used to estimate the average is:

\[
W.A. = \frac{\sum W_i X_i}{\sum W_i}
\]

Where,

W.A. = Weighted average
X = Variable
W = Weights of X

Result and Discussion

Constraints/Problems

Problems faced by producers on different size group of farms are given in Table. The response of sample farms about the problems faced by them have been classified mainly under four types:

A. Technical problem
B. Management problem
C. Agro climatic problem
D. Miscellaneous problem

In this classification technical problems ranks first (48.13%) followed by management problem (30.09%), agro climatic problem (15.56%) and miscellaneous problem (5.35%). Technical problem in case of large farms was highest (54.35%) followed by Medium farms (54.34%), small farms (46.15%) and marginal farms (45.21%). The problems related seed, plant protection and weed control, harvesting, threshing, irrigation and others problem. In case management problem it was highest marginal farms (34.57%), followed by small farms (28.85%), medium armer (27.18%), & large farmer (21.74%) management problem shows negative trend with size of farms. In case of agro climatic constraints highest intensity of problem was factor by small farmer (18.59%), followed by large farmer (17.39%), marginal farmer (13.83%), & medium farmer (13.04%). Miscellaneous problem was highest in case of large farmer (6.52%), followed by small farmer (6.41%), marginal farmer (6.38%), & medium farmer (5.43%).

Suggestions

This section is discussed under two categories i.e. respondents (farmers) suggestions and investigator suggestions

Respondent Suggestions

Suggestions given by sample farms with regards of constraints in paddy cultivation are -
1. Good quality seed should be available at grass root level at proper time.
2. Water should be discharged at proper time and in sufficient amount from canals and tube well
3. It is desired to provide continuous electricity supply at the time of peak cropping season to facilitate the effective irrigation.
4. It is to be ensured that kisan credit card and other banking facilities should be available at affordable and easy process.

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>Particulars</th>
<th>Marginal</th>
<th>Small</th>
<th>medium</th>
<th>large</th>
<th>Total</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Technical problem</td>
<td>85 (45.21)</td>
<td>72 (46.15)</td>
<td>50 (54.35)</td>
<td>25 (54.35)</td>
<td>232 (48.13)</td>
<td>I</td>
</tr>
<tr>
<td>B.</td>
<td>Management Problem</td>
<td>65 (34.57)</td>
<td>45 (28.85)</td>
<td>25 (27.18)</td>
<td>10 (21.74)</td>
<td>145 (30.09)</td>
<td>II</td>
</tr>
<tr>
<td>C.</td>
<td>Agro climatic Constraints</td>
<td>26 (13.83)</td>
<td>29 (18.59)</td>
<td>12 (13.04)</td>
<td>8 (17.39)</td>
<td>75 (15.56)</td>
<td>III</td>
</tr>
<tr>
<td>D.</td>
<td>Miscellaneous Problem</td>
<td>12 (6.38)</td>
<td>10 (6.41)</td>
<td>5 (5.43)</td>
<td>3 (6.52)</td>
<td>30 (6.22)</td>
<td>IV</td>
</tr>
<tr>
<td>Total sample</td>
<td></td>
<td>188 (100)</td>
<td>156 (100)</td>
<td>92 (100)</td>
<td>46 (100)</td>
<td>482 (100)</td>
<td></td>
</tr>
</tbody>
</table>
References